Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JACS Au ; 4(5): 1775-1785, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38818083

RESUMEN

Electrostatic interactions between charged macromolecules are ubiquitous in biological systems, and they are important also in materials design. Attraction between oppositely charged molecules is often interpreted as if the molecules had a fixed charge, which is not affected by their interaction. Less commonly, charge regulation is invoked to interpret such interactions, i.e., a change of the charge state in response to a change of the local environment. Although some theoretical and simulation studies suggest that charge regulation plays an important role in intermolecular interactions, experimental evidence supporting such a view is very scarce. In the current study, we used a model system, composed of a long polyanion interacting with cationic oligolysines, containing up to 8 lysine residues. We showed using both simulations and experiments that while these lysines are only weakly charged in the absence of the polyanion, they charge up and condense on the polycations if the pH is close to the pKa of the lysine side chains. We show that the lysines coexist in two distinct populations within the same solution: (1) practically nonionized and free in solution; (2) highly ionized and condensed on the polyanion. Using this model system, we demonstrate under what conditions charge regulation plays a significant role in the interactions of oppositely charged macromolecules and generalize our findings beyond the specific system used here.

2.
Macromolecules ; 57(3): 1050-1071, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38370914

RESUMEN

Modern drug formulations often require, besides the active drug molecule, auxiliaries to enhance their pharmacological properties. Tailor-made, biocompatible polymers covalently connected to the drug molecule can fulfill this function by increasing its solubility, reducing its toxicity, and guiding it to a specific target. If targeting membrane-bound proteins, localization of the drug close to the cell membrane and its target is beneficial to increase drug efficiency and residence time. In this study, we present the synthesis of highly defined, branched polymeric structures with membrane-binding properties. One to three hydrophilic poly(ethylene oxide) or poly(2-ethyloxazoline) side chains were connected via a peptoid backbone using a two-step iterative protocol for solid-phase peptoid synthesis. Additional groups, e.g., a hydrophobic anchor for membrane attachment, were introduced. Due to the nature of solid-phase synthesis, the number and order of the side chains and additional units can be precisely defined. The method proved to be versatile for the generation of multifunctional, branched polymeric structures of molecular weights up to approximately 7000 g mol-1. The behavior of all compounds towards biological membranes and cells was investigated using liposomes as cell membrane models, HEK293 and U251-MG cell lines, and red blood cells, thereby demonstrating their potential value as drug auxiliaries with cell membrane affinity.

3.
J Clin Med ; 13(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38337382

RESUMEN

BACKGROUND: The diagnosis of joint replacement infection is a difficult clinical challenge that often occurs when the implant cannot be salvaged. We hypothesize that the pH value of synovial fluid could be an important indicator of the inflammatory status of the joint. However, in the literature, there is a lack of data on the pH changes in hip and knee joint replacements and their relation to infection and implant failure. In this study, we aimed to measure the pH levels of synovial fluid in patients with hip and knee joint replacements. We also investigated the potential of pH measurement as a diagnostic tool for joint replacement infection. In this study, we recorded the pH values to be 7.55 and 7.46 in patients where Pseudomonas aeruginosa was identified as the cause of the prosthetic joint infection. We attribute this to the different environments created by this specific bacterium. In other cases where the pH was higher, chronic mitigated infections were diagnosed, caused by strains of Staphylococcus aureus, Streptococcus agalactiase, and coagulase negative staphylococcus. MATERIALS AND METHODS: In our cohort of 155 patients with implanted hip (THA; n = 85) or knee (TKA; n = 70) joint replacements, we conducted a prospective study with a pH measurement. Out of the whole cohort, 44 patients had confirmed joint replacement infection (28.4%) (44/155). In 111 patients, infection was ruled out (71.6%) (111/155). Joint replacement infection was classified according to the criteria of the Musculoskeletal Infection Society (MSIS) from 2018. Based on the measured values, we determined the cut-off level for the probability of ongoing inflammation. We also determined the sensitivity and specificity of the measurement. RESULTS: The group of patients with infection (n = 44) had a significantly lower synovial fluid pH (pH = 6.98 ± 0.48) than the group of patients with no infection (n = 111, pH = 7.82 ± 0.29, p < 0.001). The corresponding median pH values were 7.08 for the patients with infection and 7.83 for the patients with no infection. When we determined the cut-off level of pH 7.4, the sensitivity level of infected replacements was 88.6%, and the specificity level of the measurement was 95.5%. The predictive value of a positive test was 88.6%, and the predictive value of a negative test was 95.5%. CONCLUSIONS: Our results confirm that it is appropriate to include a pH measurement in the diagnostic spectrum of hip and knee replacements. This diagnostic approach has the potential to provide continuous in vivo feedback, facilitated by specialized biosensors. The advantage of this method is the future incorporation of a pH-detecting sensor into intelligent knee and hip replacements that will assess pH levels over time. By integrating these biosensors into intelligent implants, the early detection of joint replacement infections could be achieved, enhancing proactive intervention strategies.

4.
ACS Appl Mater Interfaces ; 16(5): 5666-5676, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38278776

RESUMEN

We report the design, synthesis, and in vitro evaluation of stimuli-responsive nanoscale micelles that can be activated by light to induce a cytotoxic effect. Micelles were assembled from amphiphilic units made of a photoactivatable ferrocenyl linker, connected on one side to a lipophilic chain, and on the other side to a hydrophilic pegylated chain. In vitro experiments indicated that pristine micelles ("off" state) were nontoxic to MCF-7 cancer cells, even at high concentrations, but became potent upon photoactivation ("on" state). The illumination process led to the dissociation of the micelles and the concomitant release of iron species, triggering cytotoxicity.


Asunto(s)
Antineoplásicos , Compuestos Ferrosos , Micelas , Metalocenos/farmacología , Fototerapia
5.
Colloids Surf B Biointerfaces ; 231: 113564, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37742364

RESUMEN

Bioactive moieties designed to bind to cell membrane receptors benefit from coupling with polymeric carriers that have enhanced affinity to the cell membrane. When bound to the cell surface, such carriers create a "2D solution" of a ligand with a significantly increased concentration near a membrane-bound receptor compared to a freely water-soluble ligand. Bifunctional polymeric carriers based on amphiphilic triblock copolymers were synthesized from 2-pent-4-ynyl oxazoline, 2-nonyl oxazoline and 2-ethyl oxazoline. Their self-assembly and interactions with plasma proteins and HEK 293 cells were studied in detail. The affinity of these triblock copolymers to HEK 293 cell membranes and organ tissues was tunable by the overall hydrophobicity of the polymer molecule, which is determined by the length of the hydrophobic and hydrophilic blocks. The circulation time and biodistribution of three representative triblock copolymers were monitored after intravenous administration to C57BL/6 albino mice. A prolonged circulation time was observed for polymers with longer hydrophobic blocks, despite their molecular weight being below the renal threshold.


Asunto(s)
Micelas , Polímeros , Humanos , Ratones , Animales , Polímeros/química , Células HEK293 , Ligandos , Distribución Tisular , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Celular , Citoplasma
6.
Colloids Surf B Biointerfaces ; 230: 113521, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37634283

RESUMEN

MOTIVATION: Amyloidoses are diseases caused by the accumulation of normally soluble proteins in the form of insoluble amyloids, leading to the gradual dysfunction and failure of various organs and tissues. Inhibiting amyloid formation is therefore an important therapeutic target. HYPOTHESIS: We hypothesized that mono- and di-gradient amphiphilic copolymers of hydrophilic 2-(m)ethyl-2-oxazoline and hydrophobic 2-aryl-2-oxazolines may inhibit amyloid fibril formation. EXPERIMENTS: In the model system with hen egg white lysozyme (HEWL) as amyloidogenic protein we determined the effect of these polymers on the amyloid formation by making use of the thioflavin T fluorescence, transmission electron microscopy, isothermal titration calorimetry, and dynamic light scattering. FINDINGS: We found that some gradient copolymers possess very potent concentration-dependent inhibitory effects on HEWL amyloid formation. Structure-activity relationship revealed that copolymers with higher ratios of aromatic monomeric units had stronger amyloid suppression effects, most plausibly due to the combination of hydrophobic and π-π interactions. The measurements also revealed that the polymers that inhibit amyloid formation most plausibly do so in the form of micelles that interact with the growing amyloid fibril ends, not with isolated HEWL molecules in solution. These findings suggest the potential use of these gradient copolymers as therapeutic agents for amyloidoses.


Asunto(s)
Amiloide , Amiloidosis , Humanos , Proteínas Amiloidogénicas , Calorimetría , Polímeros
7.
Nanoscale ; 15(30): 12574-12585, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37455598

RESUMEN

Tumor-specific drug delivery is a major challenge for the pharmaceutical industry. Nanocarrier systems have been widely investigated to increase and control drug delivery to the heterogeneous tumor microenvironment. Classically, the uptake of nanocarriers by solid tumor tissues is mainly mediated by the enhanced permeability and retention effect (EPR). This EPR effect depends on the tumor type, its location, the physicochemical properties of the carriers, and the blood perfusion of the tumoral lesions. The main goal of this study was to evaluate in vivo tumor uptake of micelle carriers, assisted by microbubble/ultrasound sonoporation. Micelles were tracked using bi-modal imaging techniques to precisely localize both the nanocarrier and its payload. Micelles were loaded with a near infrared fluorophore and radiolabeled with zirconium-89. Their pharmacokinetics, biodistribution and passive tumor targeting properties were evaluated in a subcutaneous glioblastoma (U-87 MG) mouse model using optical and PET imaging. Finally, accumulation and diffusion into the tumor micro-environment was investigated under microbubble-assisted sonoporation, which helped homogenize the delivery of the micelles. The in vivo experiments showed a good correlation between optical and PET images and demonstrated the stability of the micelles in biological media, their high and long-term retention in the tumors and their clearance through the hepato-biliary pathway. This study demonstrates that bi-modal imaging techniques are powerful tools for the development of new nanocarriers and that sonoporation is a promising method to homogenize nanomedicine delivery to tumors.


Asunto(s)
Glioma , Micelas , Ratones , Animales , Distribución Tisular , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Glioma/diagnóstico por imagen , Tomografía de Emisión de Positrones , Portadores de Fármacos/química , Microambiente Tumoral
8.
ACS Omega ; 7(47): 42711-42722, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36467927

RESUMEN

Herein, we present a versatile platform for the synthesis of pH-responsive poly([N-(2-hydroxypropyl)]methacrylamide)-b-poly[2-(diisopropylamino)ethyl methacrylate] diblock copolymer (PHPMA-b-PDPA) nanoparticles (NPs) obtained via microwave-assisted reversible addition-fragmentation chain transfer polymerization-induced self-assembly (MWI-PISA). The N-(2-hydroxypropyl) methacrylamide (HPMA) monomer was first polymerized to obtain a macrochain transfer agent with polymerization degrees (DPs) of 23 and 51. Subsequently, using mCTA and 2-(diisopropylamino)ethyl methacrylate (DPA) as monomers, we successfully conducted MWI-PISA emulsion polymerization in aqueous solution with a solid content of 10 wt %. The NPs were obtained with high monomer conversion and polymerization rates. The resulting diblock copolymer NPs were analyzed by dynamic light scattering (DLS) and cryogenic-transmission electron microscopy (cryo-TEM). cryo-TEM studies reveal the presence of only NPs with spherical morphology such as micelles and polymer vesicles known as polymersomes. Under the selected conditions, we were able to fine-tune the morphology from micelles to polymersomes, which may attract considerable attention in the drug-delivery field. The capability for drug encapsulation using the obtained in situ pH-responsive NPs, the polymersomes based on PHPMA23-b-PDPA100, and the micelles based on PHPMA51-b-PDPA100 was demonstrated using the hydrophobic agent and fluorescent dye as Nile red (NR). In addition, the NP disassembly in slightly acidic environments enables fast NR release.

9.
Adv Healthc Mater ; 11(22): e2201344, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36153823

RESUMEN

Aqueous solutions of some polymers exhibit a lower critical solution temperature (LCST); that is, they form phase-separated aggregates when heated above a threshold temperature. Such polymers found many promising (bio)medical applications, including in situ thermogelling with controlled drug release, polymer-supported radiotherapy (brachytherapy), immunotherapy, and wound dressing, among others. Yet, despite the extensive research on medicinal applications of thermoresponsive polymers, their biodistribution and fate after administration remained unknown. Thus, herein, they studied the pharmacokinetics of four different thermoresponsive polyacrylamides after intramuscular administration in mice. In vivo, these thermoresponsive polymers formed depots that subsequently dissolved with a two-phase kinetics (depot maturation, slow redissolution) with half-lives 2 weeks to 5 months, as depot vitrification prolonged their half-lives. Additionally, the decrease of TCP of a polymer solution increased the density of the intramuscular depot. Moreover, they detected secondary polymer depots in the kidneys and liver; these secondary depots also followed two-phase kinetics (depot maturation and slow dissolution), with half-lives 8 to 38 days (kidneys) and 15 to 22 days (liver). Overall, these findings may be used to tailor the properties of thermoresponsive polymers to meet the demands of their medicinal applications. Their methods may become a benchmark for future studies of polymer biodistribution.


Asunto(s)
Polímeros , Agua , Ratones , Animales , Distribución Tisular , Temperatura , Liberación de Fármacos
10.
Pharmaceutics ; 14(8)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36015316

RESUMEN

Poly(lactic-co-glycolic acid) (PLGA) nanoparticle-based drug delivery systems are known to offer a plethora of potential therapeutic benefits. However, challenges related to large-scale manufacturing, such as the difficulty of reproducing complex formulations and high manufacturing costs, hinder their clinical and commercial development. In this context, a reliable manufacturing technique suitable for the scale-up production of nanoformulations without altering efficacy and safety profiles is highly needed. In this paper, we develop an inline sonication process and adapt it to the industrial scale production of immunomodulating PLGA nanovaccines developed using a batch sonication method at the laboratory scale. The investigated formulations contain three distinct synthetic peptides derived from the carcinogenic antigen New York Esophageal Squamous Cell Carcinoma-1 (NY-ESO-1) together with an invariant natural killer T-cell (iNKT) activator, threitolceramide-6 (IMM60). Process parameters were optimized to obtain polymeric nanovaccine formulations with a mean diameter of 150 ± 50 nm and a polydispersity index <0.2. Formulation characteristics, including encapsulation efficiencies, release profiles and in vitro functional and toxicological profiles, are assessed and statistically compared for each formulation. Overall, scale-up formulations obtained by inline sonication method could replicate the colloidal and functional properties of the nanovaccines developed using batch sonication at the laboratory scale. Both types of formulations induced specific T-cell and iNKT cell responses in vitro without any toxicity, highlighting the suitability of the inline sonication method for the continuous scale-up of nanomedicine formulations in terms of efficacy and safety.

11.
Biosensors (Basel) ; 12(7)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35884249

RESUMEN

We constructed a sensor for the determination of Fe2+ and/or Fe3+ ions that consists of a polyaniline layer as an ion-to-electron transducer; on top of it, chelating molecules are deposited (which can selectively chelate specific ions) and protected with a non-biofouling poly(2-methyl-2-oxazoline)s layer. We have shown that our potentiometric sensing layers show a rapid response to the presence of Fe2+ or Fe3+ ions, do not experience interference with other ions (such as Cu2+), and work in a biological environment in the presence of bovine serum albumin (as a model serum protein). The sensing layers detect iron ions in the concentration range from 5 nM to 50 µM.


Asunto(s)
Quelantes , Electrodos de Iones Selectos , Compuestos de Anilina , Electrodos , Concentración de Iones de Hidrógeno , Iones
12.
Biomacromolecules ; 23(8): 3371-3382, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35768319

RESUMEN

We developed acid-functionalized glycogen conjugates as supramolecular carriers for efficient encapsulation and inhibition of a model cationic peptide melittin─the main component of honeybee venom. For this purpose, we synthesized and characterized a set of glycogens, functionalized to various degrees by several different acid groups. These conjugates encapsulate melittin up to a certain threshold amount, beyond which they precipitate. Computer simulations showed that sufficiently functionalized conjugates electrostatically attract melittin, resulting in its efficient encapsulation in a broad pH range around the physiological pH. Hemolytic assays confirmed in vitro that the effective inhibition of melittin's hemolytic activity occurs for highly functionalized samples, whereas no inhibition is observed when using low-functionalized conjugates. It can be concluded that functional glycogens are promising carriers for cationic molecular cargos or antidotes against animal venoms under conditions, in which suitable properties such as biodegradability and biocompatibility are crucial.


Asunto(s)
Glucógeno , Meliteno , Animales , Hemólisis , Meliteno/química , Meliteno/farmacología
13.
Free Radic Biol Med ; 187: 132-140, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35618181

RESUMEN

Radiation resistance of cancer cells represents one of the major challenges in cancer treatment. The novel self-assembled fluoralkylated diselenide nanoparticles (fluorosomes) based on seleno-l-cystine (17FSe2) possess redox-active properties that autocatalytically decompose hydrogen peroxide (H2O2) and oxidize the intracellular glutathione (GSH) that results in regulation of cellular oxidative stress. Alkylfluorinated diselenide nanoparticles showed a significant cytotoxic and radiosensitizing effect on cancer cells. The EL-4 tumor-bearing C56BL/6 mice treated with 17FSe2 followed by fractionated radiation treatment (4 × 2Gy) completely suppressed tumor growth. Our results suggest that described diselenide system behaves as a potent radiosensitizer agent targeting tumor growth and preventing tumor recurrence.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Fármacos Sensibilizantes a Radiaciones , Animales , Glutatión , Peróxido de Hidrógeno , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Oxidación-Reducción , Fármacos Sensibilizantes a Radiaciones/farmacología
14.
Macromol Biosci ; 22(5): e2100523, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35246950

RESUMEN

31 P-magnetic resonance (MR) is an important diagnostic technique currently used for tissue metabolites assessing, but it also has great potential for visualizing the internal body structures. However, due to the low physiological level of phosphorus-containing biomolecules, precise imaging requires the administration of an exogenous probe. Herein, this work describes the synthesis and MR characterization of a pioneering metal-free 31 P-MR probe based on phosphorus-containing polymeric zwitterion. The developed probe (pTMPC) is a well-defined water-soluble macromolecule characterized by a high content of naturally rare phosphorothioate groups providing a high-intensity 31 P-MR signal clearly distinguishable from biological background both in vitro and in vitro. In addition, pTMPC can serve as a sensitive 31 P-MR sensor of pathological conditions in vivo because it undergoes oxidation-induced structural changes in the presence of reactive oxygen species (ROS). Add to this the favorable 1 H and 31 P T1 /T2 relaxation times and biocompatibility, pTMPC represents a conceptually new diagnostic, whose discovery opens up new possibilities in the field of 31 P-MR spectroscopy and imaging.


Asunto(s)
Imagen por Resonancia Magnética , Fósforo , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Fósforo/metabolismo , Polímeros
15.
Pharmaceutics ; 14(2)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35214009

RESUMEN

Despite the efficacy and potential therapeutic benefits that poly(lactic-co-glycolic acid) (PLGA) nanomedicine formulations can offer, challenges related to large-scale processing hamper their clinical and commercial development. Major hurdles for the launch of a polymeric nanocarrier product on the market are batch-to-batch variations and lack of product consistency in scale-up manufacturing. Therefore, a scalable and robust manufacturing technique that allows for the transfer of nanomedicine production from the benchtop to an industrial scale is highly desirable. Downstream processes for purification, concentration, and storage of the nanomedicine formulations are equally indispensable. Here, we develop an inline sonication process for the production of polymeric PLGA nanomedicines at the industrial scale. The process and formulation parameters are optimized to obtain PLGA nanoparticles with a mean diameter of 150 ± 50 nm and a small polydispersity index (PDI < 0.2). Downstream processes based on tangential flow filtration (TFF) technology and lyophilization for the washing, concentration, and storage of formulations are also established and discussed. Using the developed manufacturing and downstream processing technologies, production of two PLGA nanoformulations encasing ritonavir and celecoxib was achieved at 84 g/h rate. As a measure of actual drug content, encapsulation efficiencies of 49.5 ± 3.2% and 80.3 ± 0.9% were achieved for ritonavir and celecoxib, respectively. When operated in-series, inline sonication and TFF can be adapted for fully continuous, industrial-scale processing of PLGA-based nanomedicines.

16.
Nanomedicine (Lond) ; 17(3): 137-149, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35012369

RESUMEN

Background: Antimicrobial submicrometer particles are being studied as promising interventions against a wide range of skin conditions, such as fungal or bacterial infections. Aims: To submicronize chloroxine, the crystalline compound 5,7-dichloro-8-hydroxyquinoline, by nanoprecipitation and characterize the resulting assemblies. Methods: The chloroxine particles were stabilized by a nonionic surfactant and were studied by a broth microdilution assay against 20 medically important bacteria and fungi. The intervention was studied using a murine model of skin irritation. Results & conclusion: Chloroxine nanoparticles with a diameter of 600-800 nm exhibit good tolerability in terms of skin irritation in vivo and good antimicrobial activity. Thus, the fabricated formulation shows great promise for interventions for both cutaneous infection control and prophylaxis.


Asunto(s)
Antiinfecciosos , Cloroquinolinoles , Animales , Antibacterianos/química , Antiinfecciosos/farmacología , Ratones , Pruebas de Sensibilidad Microbiana
17.
Int J Pharm ; 613: 121392, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34933083

RESUMEN

Inflammatory bowel disease (IBD) is a relapsing and remitting inflammatory disease affecting millions of people worldwide. The active phase of IBD is characterized by excessive formation of reactive oxygen species (ROS) in the intestinal mucosa, which further accelerates the inflammatory process. A feasible strategy for the IBD treatment is thus breaking the oxidation-inflammation vicious circle by scavenging excessive ROS with the use of a suitable antioxidant. Herein, we have developed a novel hydrogel system for oral administration utilizing sterically hindered amine-based redox polymer (SHARP) incorporating covalently bound antioxidant SHA groups. SHARP was prepared via free-radical polymerization by covalent crosslinking of 2-hydroxyethyl methacrylate (HEMA), poly(ethylene oxide) methyl ether methacrylate (PEGMA) and a SHA-based monomer, N-(2,2,6,6-tetramethyl-piperidin-4-yl)-methacrylamide. The SHARP hydrogel was resistant to hydrolysis and swelled considerably (∼90% water content) under the simulated gastrointestinal tract (GIT) conditions, and exhibited concentration-dependent antioxidant properties in vitro against different ROS. Further, the SHARP hydrogel was found to be non-genotoxic, non-cytotoxic, non-irritating, and non-absorbable from the gastrointestinal tract. Most importantly, SHARP hydrogel exhibited a statistically significant, dose-dependent therapeutic effect in the mice model of dextran sodium sulfate (DSS)-induced acute colitis. Altogether, the obtained results suggest that the SHARP hydrogel strategy holds a great promise with respect to IBD treatment.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Aminas , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Hidrogeles , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Ratones , Oxidación-Reducción , Polímeros
18.
Polymers (Basel) ; 13(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34833268

RESUMEN

Iron and copper are essential micronutrients needed for the proper function of every cell. However, in excessive amounts, these elements are toxic, as they may cause oxidative stress, resulting in damage to the liver and other organs. This may happen due to poisoning, as a side effect of thalassemia infusion therapy or due to hereditary diseases hemochromatosis or Wilson's disease. The current golden standard of therapy of iron and copper overload is the use of low-molecular-weight chelators of these elements. However, these agents suffer from severe side effects, are often expensive and possess unfavorable pharmacokinetics, thus limiting the usability of such therapy. The emerging concepts are polymer-supported iron- and copper-chelating therapeutics, either for parenteral or oral use, which shows vivid potential to keep the therapeutic efficacy of low-molecular-weight agents, while avoiding their drawbacks, especially their side effects. Critical evaluation of this new perspective polymer approach is the purpose of this review article.

19.
Polymers (Basel) ; 13(9)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062772

RESUMEN

Here, we report on the construction of biodegradable poly(ethylene oxide monomethyl ether) (MPEO)-b-poly(ε-caprolactone) (PCL) nanoparticles (NPs) having acid-labile (acyclic ketal group) linkage at the block junction. In the presence of acidic pH, the nanoassemblies were destabilized as a consequence of cleaving this linkage. The amphiphilic MPEO-b-PCL diblock copolymer self-assembled in PBS solution into regular spherical NPs. The structure of self-assemble and disassemble NPs were characterized in detail by dynamic (DLS), static (SLS) light scattering, small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). The key of the obtained NPs is using them in a paclitaxel (PTX) delivery system and study their in vitro cytostatic activity in a cancer cell model. The acid-labile ketal linker enabled the disassembly of the NPs in a buffer simulating an acidic environment in endosomal (pH ~5.0 to ~6.0) and lysosomal (pH ~4.0 to ~5.0) cell compartments resulting in the release of paclitaxel (PTX) and formation of neutral degradation products. The in vitro cytotoxicity studies showed that the activity of the drug-loaded NPs was increased compared to the free PTX. The ability of the NPs to release the drug at the endosomal pH with concomitant high cytotoxicity makes them suitable candidates as a drug delivery system for cancer therapy.

20.
Adv Healthc Mater ; 10(13): e2100304, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34050625

RESUMEN

Anticancer drug delivery strategies are designed to take advantage of the differential chemical environment in solid tumors independently, or to high levels of reactive oxygen species (ROS) or to low pH, compared to healthy tissue. Here, the design and thorough characterization of two functionalizable "AND gate" multiresponsive (MR) block amphiphilic copolymers are reported, aimed to take full advantage of the coexistence of two chemical cues-ROS and low pH-present in the tumor microenvironment. The hydrophobic blocks contain masked pH-responsive side chains, which are exposed exclusively in response to ROS. Hence, the hydrophobic polymer side chains will undergo a charge shift in a very relevant pH window present in the extracellular milieu in most solid tumors (pH 5.6-7.2) after demasking by ROS. Doxorubicin (DOX)-loaded nanosized "AND gate" MR polymersomes (MRPs) are fabricated via microfluidic self-assembly. Chemical characterization reveals ROS-dependent pH sensitivity and accelerated DOX release under influence of both ROS and low pH. Treatment of tumor-bearing mice with DOX-loaded nonresponsive and "AND gate" MRPs dramatically decreases cardiac toxicity. The most optimal "AND gate" MRPs outperform free DOX in terms of tumor growth inhibition and survival, shedding light on chemical requirements for successful cancer nanomedicine.


Asunto(s)
Nanomedicina , Nanopartículas , Animales , Doxorrubicina/farmacología , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Concentración de Iones de Hidrógeno , Ratones , Micelas , Oxígeno , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...