Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Am J Drug Alcohol Abuse ; 48(6): 673-683, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36137281

RESUMEN

Background: Inhalant (e.g. toluene) misuse by adolescents has been linked to psychosis and persistent cognitive deficits. Identifying effective strategies to improve cognitive deficits following chronic toluene misuse is critical. 5-HT1A receptor has been proposed as a target for the treatment of cognitive deficits.Objectives: We compared the effects of antipsychotics on recognition deficits after adolescent toluene exposure in mice and elucidated the role of 5-HT1A receptors in the cognition-improving effects of antipsychotics.Methods: Male NMRI mice (n = 279) received one injection per day of either toluene (750 mg/kg) or corn oil at postnatal days 35-39 and 42-46. Thereafter, the acute and subchronic effects of haloperidol, aripiprazole, or clozapine on toluene-induced recognition deficits were evaluated by novel object recognition test.Results: Acute administration of aripiprazole (p < .05) and clozapine (p < .01), but not haloperidol, significantly attenuated the toluene-induced recognition deficits. Pretreatment with 5-HT1A receptor antagonist WAY -100,635 (p < .05) blocked their beneficial effects. Moreover, 5-HT1A receptor agonist buspirone (p < .01) ameliorated the toluene-induced recognition deficits, which was reversed by WAY -100,635 (p < .001). Finally, after repeated treatment with clozapine, aripiprazole, and buspirone daily for 14 days, the impaired object recognition in toluene-exposed mice was significantly improved (p < .05) and the beneficial effects lasted for at least 2 weeks (p < .05).Conclusions: The results indicate that clozapine and aripiprazole, which display 5-HT1A agonist properties, restored cognitive deficits in mice induced by adolescent toluene exposure. These findings suggest that these antipsychotics should be further explored as a potential treatment option for cognitive deficits in patients with psychosis associated with toluene exposure.


Asunto(s)
Antipsicóticos , Cognición , Receptor de Serotonina 5-HT1A , Tolueno , Animales , Masculino , Ratones , Receptor de Serotonina 5-HT1A/metabolismo , Tolueno/efectos adversos , Antipsicóticos/uso terapéutico , Cognición/efectos de los fármacos
3.
Biomed Pharmacother ; 144: 112369, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34715446

RESUMEN

As an N-methyl-D-aspartate (NMDA) receptor inhibitor, ketamine has become a popular recreational substance and currently is used to address treatment-resistant depression. Since heavy ketamine use is associated with persisting psychosis, cognitive impairments, and neuronal damage, the safety of ketamine treatment for depression should be concerned. The nutrient supplement betaine has been shown to counteract the acute ketamine-induced psychotomimetic effects and cognitive dysfunction through modulating NMDA receptors. This study aimed to determine whether the adjunctive or subsequent betaine treatment would improve the enduring behavioral disturbances and hippocampal synaptic abnormality induced by repeated ketamine exposure. Mice received ketamine twice daily for 14 days, either combined with betaine co-treatment or subsequent betaine post-treatment for 7 days. Thereafter, three-chamber social approach test, reciprocal social interaction, novel location/object recognition test, forced swimming test, and head-twitch response induced by serotonergic hallucinogen were monitored. Data showed that the enduring behavioral abnormalities after repeated ketamine exposure, including disrupted social behaviors, recognition memory impairments, and increased depression-like and hallucinogen-induced head-twitch responses, were remarkably improved by betaine co-treatment or post-treatment. Consistently, betaine protected and reversed the reduced hippocampal synaptic activity, such as decreases in field excitatory post-synaptic potentiation (fEPSP), long-term potentiation (LTP), and PSD-95 levels, after repeated ketamine treatment. These results demonstrated that both co-treatment and post-treatment with betaine could effectively prevent and reverse the adverse behavioral manifestations and hippocampal synaptic plasticity after repeated ketamine use, suggesting that betaine can be used as a novel adjunct therapy with ketamine for treatment-resistant depression and provide benefits for ketamine use disorders.


Asunto(s)
Antipsicóticos/farmacología , Conducta Animal/efectos de los fármacos , Betaína/farmacología , Hipocampo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Psicosis Inducidas por Sustancias/prevención & control , Transmisión Sináptica/efectos de los fármacos , Animales , Cognición/efectos de los fármacos , Modelos Animales de Enfermedad , Homólogo 4 de la Proteína Discs Large/metabolismo , Antagonistas de Aminoácidos Excitadores , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Hipocampo/metabolismo , Hipocampo/fisiopatología , Ketamina , Locomoción/efectos de los fármacos , Masculino , Ratones Endogámicos ICR , Prueba de Campo Abierto/efectos de los fármacos , Psicosis Inducidas por Sustancias/etiología , Psicosis Inducidas por Sustancias/fisiopatología , Psicosis Inducidas por Sustancias/psicología , Reconocimiento en Psicología/efectos de los fármacos , Conducta Social , Natación
4.
Neuroscience ; 472: 128-137, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34400248

RESUMEN

Ketamine, an N-methyl-d-aspartate receptor (NMDAR) blocker, is gaining ground as a treatment option for depression. The occurrence of persistent psychosis and cognitive impairment after repeated use of ketamine remains a concern. N, N-dimethylglycine (DMG) is a nutrient supplement and acts as an NMDAR glycine site partial agonist. The objective of this study was to assess whether DMG could potentially prevent the behavioral and synaptic deficits in mice after repeated ketamine exposure. Male ICR mice received ketamine (20 mg/kg) from postnatal day (PN) 33-46, twice daily, for 14 days. The locomotor activity, novel location recognition test (NLRT), novel object recognition test (NORT), social interaction test, head twitch response induced by serotonergic hallucinogen, and the basal synaptic transmission and long-term potentiation (LTP) in the hippocampal slices were monitored after repeated ketamine treatment. Furthermore, the protective effects of repeated combined administration of DMG (30 and 100 mg/kg) with ketamine on behavioral abnormalities and synaptic dysfunction were assessed. The results showed that mice exhibited memory impairments, social withdrawal, increased head twitch response, reduced excitatory synaptic transmission, and lower LTP after repeated ketamine exposure. The ketamine-induced behavioral and synaptic deficits were prevented by co-treatment with DMG. In conclusion, these findings may pave a new path forward to developing a combination formula with ketamine and DMG for the treatment of depression and other mood disorders.


Asunto(s)
Ketamina , Animales , Ketamina/toxicidad , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Endogámicos ICR , Receptores de N-Metil-D-Aspartato , Sarcosina/análogos & derivados
5.
Nutr Neurosci ; 24(6): 443-458, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31331257

RESUMEN

Objectives: The neuroprotective effects of resveratrol against excitatory neurotoxicity have been associated with N-methyl-D-aspartate receptor (NMDAR) inhibition. This study examined the differential inhibitory effects of resveratrol on NMDAR-mediated responses in neuronal cells with different NMDAR subtype composition.Methods: The effects of resveratrol on NMDA-induced cell death and calcium influx in immature and mature rat primary cortical neurons were determined and compared. Moreover, the potencies and efficacies of resveratrol to inhibit NR1/NR2A, NR1/NR2B, NR1/NR2C, and NR1/NR2D NMDAR expressed in HEK 293 cells were evaluated.Results: Resveratrol significantly attenuated NMDA-induced cell death in mature neurons, but not in immature neurons. Resveratrol also concentration-dependently reduced NMDA-induced calcium influx among all NMDAR subtypes, but displayed NR2 subunit selectivity, with a potency rank order of NR2B = NR2D > NR2A = NR2C and an efficacy rank order of NR2B = NR2C > NR2A = NR2D. Data show the stronger inhibitory effects of resveratrol on NR1/NR2B than other subtypes. Moreover, resveratrol did not affect hippocampal long-term potentiation (LTP), but impaired long-term depression (LTD).Discussion: These findings reveal the specific NMDAR modulating profile of resveratrol, providing further insight into potential mechanisms underlying the protective effects of resveratrol on neurological disorders.


Asunto(s)
Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Fármacos Neuroprotectores/administración & dosificación , Receptores de N-Metil-D-Aspartato/fisiología , Resveratrol/administración & dosificación , Animales , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Células HEK293 , Humanos , Potenciales de la Membrana/efectos de los fármacos , Ratas Sprague-Dawley
6.
Toxicology ; 446: 152613, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33086094

RESUMEN

Toluene intoxication produces deleterious effects on cognitive function, which has been associated with the inhibition of N-methyl-d-aspartate receptor (NMDAR). The present study determined whether N,N-dimethylglycine (DMG), a nutrient supplement and a partial agonist for NMDAR glycine binding site, could counteract recognition memory deficits and hippocampal synaptic dysfunction after acute toluene exposure. Male ICR mice were treated with toluene (250-750 mg/kg) for monitoring the sociability and social novelty in three-chamber test and long-term potentiation (LTP) of hippocampal synaptic transmission. Moreover, the combined effects of DMG (30-100 mg/kg) pretreatment with toluene (750 mg/kg) on three-chamber test, novel location and object recognition test and synaptic function were determined. Toluene decreased the sociability, preference for social novelty, hippocampal synaptic transmission and LTP in a dose-dependent manner. DMG pretreatment significantly reduced the toluene-induced memory impairment in social recognition, object location and object recognition and synaptic dysfunction. Furthermore, NMDAR glycine binding site antagonist, 7-chlorokynurenic acid, abolished the protective effects of DMG. These results indicate that DMG could prevent toluene-induced recognition memory deficits and synaptic dysfunction and its beneficial effects might be associated with modulation of NMDAR. These findings suggest that DMG supplementation might be an effective approach to prevent memory problems for the workers at risk of high-level toluene exposure or toluene abusers.


Asunto(s)
Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/prevención & control , Plasticidad Neuronal/efectos de los fármacos , Reconocimiento en Psicología/efectos de los fármacos , Sarcosina/análogos & derivados , Tolueno/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Masculino , Trastornos de la Memoria/psicología , Ratones , Ratones Endogámicos ICR , Plasticidad Neuronal/fisiología , Reconocimiento en Psicología/fisiología , Sarcosina/farmacología , Sarcosina/uso terapéutico , Solventes/toxicidad
7.
Nutr Neurosci ; 22(12): 867-876, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29642764

RESUMEN

Objectives: The antiepileptic activity of resveratrol has been revealed in various experimental models of epilepsy. The present study evaluated the effects of resveratrol on the seizures and hyperexcitable neuronal activity associated with activation of N-methyl-d-aspartic acid (NMDA) receptor and inhibition of voltage-gated potassium channels.Methods: The effects of resveratrol on seizure thresholds, excitatory field potentials (EFPs) and action potentials induced by NMDA and 4-aminopyridine (4-AP) were monitored in mice, the mouse cortical slices and rat cortical neurons, respectively.Results: Resveratrol increased the NMDA-induced seizure thresholds and suppressed the frequency of NMDA/glycine-evoked EFPs and action potentials. However, resveratrol lowered the 4-AP-induced thresholds for myoclonic twitch and face and forelimb clonus, yet enhanced the thresholds for running and bouncing clonus and tonic hindlimb extension at the higher dose (50 mg/kg). A similar biphasic response of resveratrol was observed in the frequency of EFPs and action potential firings evoked by 4-AP, with enhancement at lower concentrations, but suppression at higher concentrations.Discussion: These findings suggest that resveratrol might be capable of protecting against the seizure types related to neuronal excitability and progression mediated by NMDA receptor activation, but not suitable for the seizures caused by disturbance of the voltage-dependent potassium channels.


Asunto(s)
4-Aminopiridina/farmacología , Excitabilidad Cortical/efectos de los fármacos , N-Metilaspartato/farmacología , Resveratrol/administración & dosificación , Convulsiones/tratamiento farmacológico , Animales , Células Cultivadas , Corteza Cerebral/embriología , Corteza Cerebral/fisiología , Potenciales Evocados/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos ICR , Neuronas/efectos de los fármacos , Neuronas/fisiología , Bloqueadores de los Canales de Potasio , Embarazo , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/fisiología , Convulsiones/inducido químicamente
8.
Toxicology ; 408: 39-45, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29935984

RESUMEN

Toluene, a commonly used organic solvent, produces a variety of behavioral disturbances in both humans and animals comparable to noncompetitive N-methyl-D-aspartate receptor (NMDARs) antagonists, such as phencyclidine (PCP). N-acetylcysteine (NAC) is capable of reversing the psychotomimetic effects of PCP via activation of cystine-glutamate antiporters (xCT). The present study examined whether NAC is capable of attenuating the toluene-induced brain stimulation reward enhancement and behavioral manifestations. Male mice received various doses of NAC prior to toluene exposure for assessment of intracranial self-stimulation (ICSS) thresholds, rotarod test, novel object recognition task and social interaction test. NAC ameliorated the lowering of ICSS thresholds, motor incoordination, object recognition memory impairments and social withdrawal induced by toluene. Furthermore, the capacity of NAC to ameliorate acute toluene-induced deficits in object recognition and social interaction was blocked by the xCT inhibitor (S)-4-carboxyphenylglycine and the mGluR2/3 antagonist LY341495. These results indicate that NAC could prevent toluene-induced reward facilitation and behavioral disturbances and its beneficial effects, at least for cognitive function and social interaction, are associated with activation of the xCT and mGluR2/3. These findings show the potential promise for NAC to treat toluene dependence and to prevent toluene intoxication caused by unintentional or deliberate inhalation.


Asunto(s)
Acetilcisteína/farmacología , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Fármacos Neuroprotectores/farmacología , Recompensa , Solventes/toxicidad , Tolueno/toxicidad , Sistema de Transporte de Aminoácidos y+/agonistas , Sistema de Transporte de Aminoácidos y+/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Conducta Exploratoria/efectos de los fármacos , Relaciones Interpersonales , Masculino , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Reconocimiento en Psicología/efectos de los fármacos
9.
Dev Neurobiol ; 75(5): 463-84, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25288019

RESUMEN

CD47 is involved in neurite differentiation in cultured neurons, but the function of CD47 in brain development is largely unknown. We determined that CD47 mRNA was robustly expressed in the developing cerebellum, especially in granule cells. CD47 protein was mainly expressed in the inner layer of the external granule layer (EGL), molecular layer, and internal granule layer (IGL), where granule cells individually become postmitotic and migrate, leading to neurite fasciculation. At postnatal day 8 (P8), CD47 knockout mice exhibited an increased number of proliferating granule cells in the EGL, whereas the CD47 agonist peptide 4N1K increased the number of postmitotic cells in primary granule cells. Knocking out the CD47 gene and anti-CD47 antibody impaired the radial migration of granule cells from the EGL to the IGL individually in mice and slice cultures. In primary granule cells, knocking out CD47 reduced the number of axonal collaterals and dendritic branches; by contrast, overexpressing CD47 or 4N1K treatment increased the axonal length and numbers of axonal collaterals and dendritic branches. Furthermore, the length of the fissure between Lobules VI and VII was decreased in CD47 knockout mice at P21 and at 14 wk after birth. Lastly, CD47 knockout mice exhibited increased social interaction at P21 and depressive-like behaviors at 10 wk after birth. Our study revealed that the cell adhesion molecule CD47 participates in multiple phases of granule cell development, including proliferation, migration, and neurite differentiation implying that aberrations of CD47 are risk factors that cause abnormalities in cerebellar development and atypical behaviors.


Asunto(s)
Antígeno CD47/metabolismo , Diferenciación Celular/fisiología , Cerebelo/citología , Relaciones Interpersonales , Neuronas/metabolismo , Organogénesis/fisiología , Animales , Conducta Animal , Antígeno CD47/genética , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA