Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 937: 173426, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38796015

RESUMEN

The artificial structures can influence wetland topology and sediment properties, thereby shaping plant distribution and composition. Macrobenthos composition was correlated with plant cover. Previous studies on the impact of artificial structures on plant distribution are scarce in incorporating time-series data or extended field surveys. In this study, a machine-learning-based species distribution model with decade-long observation was analyzed to investigate the correlation between the shift in the distribution of B. planiculmis, artificial structure-induced elevation changes and the expansion of other plants, as well as their connection to soil properties and crab composition dynamics under plants in Gaomei Wetland. Long short-term memory model (LSTM) with Shapley additive explanations (SHAP) was employed for predicting the distribution of B. planiculmis and explaining feature importance. The results indicated that wetland topology was influenced by both artificial structures and plants. Areas initially colonized by B. planiculmis were replaced by other species. Soil properties showed significant differences among plant patches; however, principal component analysis (PCA) of sediment properties and niche similarity analysis showed that the niche of plants was overlapped. Crab composition was different under different plants. The presence probability of B. planiculmis near woody paths decreased according to LSTM and field survey data. SHAP analysis suggested that the distribution of other plants, historical distribution of B. planiculmis and sediment properties significantly contributed to the presence probability of B. planiculmis. A sharp decrease in SHAP values with increasing NDVI at suitable elevations, overlap in PCA of sediment properties and niche similarity indicated potential competition among plants. This decade-long time-series field survey revealed the joint effects of artificial structure and vegetation on the topology and soil properties dynamics. These changes influenced the plant distribution through potential plant competition. LSTM with SHAP provided valuable insights in the underlying the mechanisms of artificial structure effects on the plant zonation process.


Asunto(s)
Aprendizaje Automático , Humedales , Braquiuros , Monitoreo del Ambiente/métodos , Suelo/química , China , Plantas , Animales
2.
Dis Model Mech ; 16(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37929799

RESUMEN

To understand the effects of a high-fat diet (HFD) on lung cancer progression and biomarkers, we here used an inducible mutant epidermal growth factor receptor (EGFR)-driven lung cancer transgenic mouse model fed a regular diet (RD) or HFD. The HFD lung cancer (LC-HFD) group exhibited significant tumor formation and deterioration, such as higher EGFR activity and proliferation marker expression, compared with the RD lung cancer (LC-RD) group. Transcriptomic analysis of the lung tissues revealed that the significantly changed genes in the LC-HFD group were highly enriched in immune-related signaling pathways, suggesting that an HFD alters the immune microenvironment to promote tumor growth. Cytokine and adipokine arrays combined with a comprehensive analysis using meta-database software indicated upregulation of C-reactive protein (CRP) in the LC-HFD group, which presented with increased lung cancer proliferation and metastasis; this was confirmed experimentally. Our results imply that an HFD can turn the tumor growth environment into an immune-related pro-tumorigenic microenvironment and demonstrate that CRP has a role in promoting lung cancer development in this microenvironment.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Ratones , Animales , Proteína C-Reactiva , Dieta Alta en Grasa , Ratones Transgénicos , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/genética , Receptores ErbB/genética , Microambiente Tumoral
3.
J Chem Theory Comput ; 18(7): 4456-4471, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35759249

RESUMEN

Molecular crystals of energetic materials (EMs) are denser than typical molecular crystals and are characterized by distinct intermolecular interactions between nitrogen-containing moieties. To assess the performance of dispersion-inclusive density functional theory (DFT) methods, we have compiled a data set of experimental sublimation enthalpies of 31 energetic materials. We evaluate the performance of three methods: the semilocal Perdew-Burke-Ernzerhof (PBE) functional coupled with the pairwise Tkatchenko-Scheffler (TS) dispersion correction, PBE with the many-body dispersion (MBD) method, and the PBE-based hybrid functional (PBE0) with MBD. Zero-point energy contributions and thermal effects are described using the quasi-harmonic approximation (QHA), including explicit treatment of thermal expansion, which we find to be non-negligible for EMs. The lattice energies obtained with PBE0+MBD are the closest to experimental sublimation enthalpies with a mean absolute error of 9.89 kJ/mol. However, the state-of-the-art treatment of vibrational and thermal contributions makes the agreement with experiment worse. Pressure-volume curves are also examined for six representative materials. For pressure-volume curves, all three methods provide reasonable agreement with experimental data with mean absolute relative errors of 3% or less. Most of the intermolecular interactions typical of EMs, namely nitro-amine, nitro-nitro, and nitro-hydrogen interactions, are more sensitive to the choice of the dispersion method than to the choice of the exchange-correlation functional. The exception is π-π stacking interactions, which are also very sensitive to the choice of the functional. Overall, we find that PBE+TS, PBE+MBD, and PBE0+MBD do not perform as well for energetic materials as previously reported for other classes of molecular crystals. This highlights the importance of testing dispersion-inclusive DFT methods for diverse classes of materials and the need for further method development.

4.
Acta Biomater ; 138: 254-272, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34774782

RESUMEN

The success of engineered tissues is limited by the need for rapid perfusion of a functional vascular network that can control tissue engraftment and promote survival after implantation. Diabetic conditions pose an additional challenge, because high glucose and lipid concentrations cause an aggressive oxidative environment that impairs vessel remodeling and stabilization and impedes integration of engineered constructs into surrounding tissues. Thus, to achieve rapid vasculogenesis, angiogenesis, and anastomosis, hydrogels incorporating cells in their structure have been developed to facilitate formation of functional vascular networks within implants. However, their transport diffusivity decreases with increasing thickness, preventing the formation of a thick vascularized tissue. To address this, we used diffusion-based computational simulations to optimize the geometry of hydrogel structures. The results show that the micro-patterned constructs improved diffusion, thus supporting cell viability, and spreading while retaining their mechanical properties. Thick cell-laden bulk, linear, or hexagonal infill patterned hydrogels were implanted; and structural stability due to skin mobility was improved by the protective spacer. Larger and thicker perfused vascular networks formed in the hexagonal structures (∼17 mm diameter, ∼1.5 mm thickness) in both normal and diabetic mice on day 3, and they became functional and uniformly distributed on day 7. Moreover, transplanted islets were rapidly integrated subcutaneously in this engineered functional vascular bed, which significantly enhanced islet viability and insulin secretion. In summary, we developed a promising strategy for generating large, thick vascularized tissue constructs, which may support transplanted islet cells. These constructs showed potential for engineering other vascularized tissues in regenerative therapy. STATEMENT OF SIGNIFICANCE: Diffusion-based computational simulations were used to optimize the geometry of hydrogel structures, i.e., hexagonal cell-laden hydrogels. To maintain the hydrogel's structural integrity, a spacer was designed and co-implanted subcutaneously to increase the permeability of explants. The spacer provides the structural integrity to improve the permeability of the implanted hydrogel. Otherwise, the implanted hydrogel may be easily squeezed and deformed by compression from the skin mobility of mice. Here, we successfully developed a cell-based strategy for rapidly generating large, functional vasculature (diameter ∼17 mm and thickness ∼1.5 mm) in both normal and diabetic mice and demonstrated its advantages over currently available methods in a clinically-relevant animal model. This concept could serve as a basis for engineering and repairing other tissues in animals.


Asunto(s)
Diabetes Mellitus Experimental , Animales , Diabetes Mellitus Experimental/terapia , Hidrogeles , Ratones , Ingeniería de Tejidos , Andamios del Tejido
5.
J Control Release ; 329: 731-742, 2021 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-33031879

RESUMEN

Dictamnine is an active pharmaceutical ingredient in Dictamnus dasycarpus, a Chinese herbal medicine widely used for the treatment of skin inflammations such as atopic dermatitis (AD). Oxazolone has been demonstrated to induce significant skin inflammation and produce inflammatory cytokine expression identical to that of AD. An in vitro HaCaT inflammation model treated with dictamnine, which efficiently scavenged the reactive oxygen species (ROS) and mitochondrial ROS (mROS), and it reduced interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α) expression, NLRP3 inflammasome activation, and NF-κB expression. To explore the anti-inflammatory mechanism of dictamnine and enhance sustained drug release and penetration into epidermal structures in a dermatitis mouse model, we prepared PLGA-nanocarrier-encapsulated dictamnine (Dic-PLGA-NC) in a specifically designed bioreactor, namely an ultrasound composite streams-impinging mixer (U-SiM). Mouse dermatitis model was treated with Dic-PLGA-NC medication, spleens were collected to evaluate body weight ratio, and skin was retrieved for histological examination and two-photon microscopy. The data demonstrate that Dic-PLGA-NC efficiently penetrated the dermal layer, making it superior to naked dictamnine; moreover, it ameliorated the dermatitis symptoms and inflammatory cytokine expression in vivo. Dic-PLGA-NC produced using the U-SiM bioreactor could be used in new manufacturing processes for drugs to treat AD.


Asunto(s)
Dermatitis Atópica , Quinolinas , Animales , Citocinas , Dermatitis Atópica/tratamiento farmacológico , Modelos Animales de Enfermedad , Inflamación , Ratones , FN-kappa B , Oxazolona , Piel , Factor de Necrosis Tumoral alfa
6.
Artículo en Inglés | MEDLINE | ID: mdl-32512940

RESUMEN

In the real world, dynamic changes in air pollutants and meteorological factors coexist simultaneously. Studies identifying the effects of individual pollutants on acute exacerbation (AE) of asthma may overlook the health effects of the overall combination. A comprehensive study examining the influence of air pollution and meteorological factors is required. Asthma AE data from emergency room visits were collected from the Taiwan National Health Insurance Research Database. Complete monitoring data for air pollutants (SO2; NO2; O3; CO; PM2.5; PM10) and meteorological factors were collected from the Environmental Protection Agency monitoring stations. A bi-directional case-crossover analysis was used to investigate the effects of air pollution and meteorological factors on asthma AE. Among age group divisions, a 1 °C temperature increase was a protective factor for asthma ER visits with OR = 0.981 (95% CI, 0.971-0.991) and 0.985 (95% CI, 0.975-0.994) for pediatric and adult patients, respectively. Children, especially younger females, are more susceptible to asthma AE due to the effects of outdoor air pollution than adults. Meteorological factors are important modulators for asthma AE in both asthmatic children and adults. When studying the effects of air pollution on asthma AE, meteorological factors should be considered.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Asma , Adolescente , Adulto , Contaminantes Atmosféricos/toxicidad , Asma/etiología , Niño , Femenino , Humanos , Masculino , Conceptos Meteorológicos , Material Particulado/toxicidad , Taiwán , Adulto Joven
7.
ACS Appl Mater Interfaces ; 10(25): 21712-21720, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29863325

RESUMEN

The rapid development of wearable electronic devices has prompted a strong demand to develop stretchable organic solar cells (OSCs) to serve as the advanced powering systems. However, to realize an intrinsically stretchable OSC is challenging because it requires all the constituent layers to possess certain elastic properties. It thus necessitates a combined engineering of charge-transporting layers and photoactive materials. Herein, we first describe a stretchable electron-extraction layer using a blend of poly[(9,9-bis(3'-( N, N-dimethylamino)propyl)-2,7-fluorene)- alt-2,7-(9,9-dioctylfluorene)] (PFN) and nitrile butadiene rubber (NBR, Nipol 1072). This hybrid PFN/NBR layer exhibits a much lower Derjaguin-Muller-Toporov modulus (0.45 GPa) than the value (1.25 GPa) of the pristine PFN and could withstand a high strain (60% strain) without showing any cracks. Moreover, besides enriching the stretchability of PFN, the terminal carboxyl groups of NBR can ionize PFN to promote its solution-processability in polar solvents and to ensure the interfacial dipole formation at the corresponding interface in the device, as evidenced by the Fourier transform infrared and ultraviolet photoelectron spectroscopy analyses. By further coupling the replacement of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) with nonfullerene acceptors owing to better mechanical stretchability in the photoactive layer, OSCs with improved intrinsically stretchability and performance were demonstrated. An all-polymer OSC can exhibit a power conversion efficiency of 2.82% after 10% stretching, surpassing the PCBM-based device that can only withstand 5% strain.

8.
Eur J Pharm Sci ; 121: 106-117, 2018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-29800612

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a problem in obese people caused by increasing intake of high-calorie food such as fructose implicated in the elevated prevalence. It is necessary to identify novel drugs to develop effective therapies. In this study, we combined LOPAC® (The Library of Pharmacologically Active Compounds) and High-Content screening to identify compounds that significantly reduced intracellular lipid droplets (LD) after high fat medium (HFM) treatment. Among 1280 compounds, we identified 239 compounds that reduced LD by >50%. Of these, 17 maintained cell viability. Nine of them were selected for validation using normal primary hepatocytes, of which five compounds showed dose-dependent efficacy. Whole genome transcriptomic network analysis was performed to construct the underlying regulatory network. There were 831 (711 up-regulated and 120 down-regulated genes) and 3480 (2009 up-regulated and 1471 down-regulated genes) genes that showed a significant change (>2-fold; p < 0.05) after 12 and 24 h HFM treatment, respectively. Gene enrichment and pathway analysis showed several immune responses mediated by MIF, IL-17, TLR, and IL-6. These compounds modulate lipogenesis via GSK3ß and CREB1, which is followed by an alteration in the expression of several downstream genes related to hepatocellular carcinoma and hepatitis. CREB1 is a core transcription factor and may be a potential therapeutic target for liver disease. In conclusion, this proof of concept provides a strategy for identifying novel drugs for treatment of fatty liver disease as well as elucidates their underlying mechanisms. This research provides opportunity for developing future pharmaceutical therapeutics.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Gotas Lipídicas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dieta Alta en Grasa , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Lípidos/farmacología , Ratones , Enfermedad del Hígado Graso no Alcohólico/genética
9.
J Biomater Appl ; 32(1): 12-27, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28541124

RESUMEN

AISI 316L specimens were nitrided using a low temperature (390℃) plasma nitriding process and then coated with a thin layer of titanium nitride by closed field unbalanced magnetron sputtering. The microstructure, adhesion properties and hardness of the duplex-treated samples were examined using X-ray diffraction, scratch testing and nanoindentation, respectively. In addition, the tribological properties were investigated by means of reciprocating wear tests performed against 316L, Si3N4 and Ti6Al4V balls under a load of 10 N for 24 min in 0.9% NaCl solution. The electrochemical resistance of the samples was evaluated by potentiodynamic polarisation tests. Finally, the biocompatibility of the samples was investigated by seeding purified mouse leukemic monocyte macrophage cells (Raw 264.7) on the sample surface for one, three and five days, respectively. In general, the results showed that the duplex nitriding and titanium nitride coating process significantly improved the tribological properties, electrochemical resistance and biocompatibility of the AISI 316L samples.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Acero Inoxidable/química , Titanio/química , Aleaciones , Animales , Supervivencia Celular , Impedancia Eléctrica , Dureza , Ensayo de Materiales , Ratones , Potenciometría , Células RAW 264.7
10.
Chem Asian J ; 11(10): 1631-40, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-27061212

RESUMEN

We report pentacene-based organic field-effect transistor memory devices utilizing supramolecular electrets, consisting of a polyimide, PI(6FOH-ODPA), containing hydroxyl groups for hydrogen bonding with amine functionalized aromatic rings (AM) of 1-aniline (AM1), 2-naphthylamine (AM2), 2-aminoanthracene (AM3), and 1-aminopyrene (AM4). The effect of the phenyl ring size and composition of AM1-AM4 on the hole-trapping capability of the fabricated devices was investigated systematically. Under an operating voltage under ±40 V, the prepared devices using the electrets of 100 % AM1-AM4/PI ratios exhibited a memory window of 0, 8.59, 25.97, and 29.95 V, respectively, suggesting that the hole-trapping capability increased with enhancing phenyl ring size. The memory window was enhanced as the amount of AM in PI increased. Furthermore, the devices showed a long charge-retention time of 10(4)  s with an ON/OFF current ratio of around 10(3) -10(4) and multiple switching stability over 100 cycles. This study demonstrated that the electrical characteristics of the OFET memory devices could be manipulated through the chemical compositions of the supramolecular electrets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...