Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 7(1): 1368, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28465531

RESUMEN

Development of manufacture trend for TFTs technologies has focused on improving electrical properties of films with the cost reduction to achieve commercialization. To achieve this goal, high-performance sub-50 nm TFTs-based MOSFETs with ON-current (Ion)/subthreshold swing (S.S.) of 181 µA/µm/107 mV/dec and 188 µA/µm/98 mV/dec for NMOSFETs and PMOSFETs in a monolithic 3D circuit were demonstrated by a low power with low thermal budget process. In addition, a stackable static random access memory (SRAM) integrated with TFTs-based MOSFET with static noise margins (SNM) equals to 390 mV at VDD = 1.0 V was demonstrated. Overall processes include a low thermal budget via ultra-flat and ultra-thin poly-Si channels by solid state laser crystallization process, chemical-mechanical polishing (CMP) planarization, plasma-enhanced atomic layer deposition (ALD) gate stacking layers and infrared laser activation with a low thermal budget. Detailed material and electrical properties were investigated. The advanced 3D architecture with closely spaced inter-layer dielectrics (ILD) enables high-performance stackable MOSFETs and SRAM for power-saving IoT/mobile products at a low cost or flexible substrate.

2.
J Electron Microsc (Tokyo) ; 59 Suppl 1: S149-54, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20576720

RESUMEN

An understanding of the structural and optical properties of quantum dots (QDs) is critical for their use in optical communication devices. In this study, single- and multi-layer self-organized InAs QDs grown on (001) GaAs substrates by molecular beam epitaxy (MBE) were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images show that the lateral size of multi-layer InAs QDs are larger and flatter than single-layer InAs QDs, which are oval-shaped. The change in shape and size may be attributed to the presence of InGaAs spacer layers in multi-layer InAs QDs. Reciprocal spacer mapping and fast Fourier transformation images clearly show that InGaAs spacer layers present in the multi-layer InAs QDs structures help to release the strain originally existing in the QDs. In addition, the photoluminescence peak of the multi-layer InAs QDs is broader than QD in the single-layer one, which implies that the multi-layer InAs QDs size variation is more random than the single-layer one and this corresponds with the HAADF-STEM images. These results prove that spacer layers release strain influencing the morphology and optical properties of the QDs.

3.
Ultramicroscopy ; 108(11): 1495-9, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18768262

RESUMEN

Quantum dots (QDs) have great potential in optical fiber communication applications were widely recognized. The structure of molecular beam epitaxy (MBE) grew InAsN QDs were investigated by transmission electron microscopy (TEM) and measured their optical properties by photoluminescence (PL). TEM images show that the InAsN QDs are irregular or oval shaped. Some of the InAsN QDs are observed to have defects, such as dislocations at or near the surface in contrast to InAs QDs, which appear to be defect free. PL results for InAsN QDs showed a red-shifted emission peak. In addition, the InAsN emission peak is broader than InAs QDs, which supports the TEM observation that the size distribution of the InAsN QDs is more random than InAs QDs. The results show that the addition of nitrogen to InAs QDs leads to a decrease in the average size of the QDs, bring changes in the QD's shape, compositional distribution, and optical properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...