Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38511304

RESUMEN

A key challenge in designing single-atom catalysts (SACs) with multiple and synergistic functions is to optimize their structure across different scales, as each scale determines specific material properties. We advance the concept of a comprehensive optimization of SACs across different levels of scale, from atomic, microscopic to mesoscopic scales, based on interfacial kinetics control on the coupled metal-dissolution/polymer-growth process in SAC synthesis. This approach enables us to manipulate the multilevel interior morphologies of SACs, such as highly porous, hollow, and double-shelled structures, as well as the exterior morphologies inherited from the metal oxide precursors. The atomic environment around the metal centers can be flexibly adjusted during the dynamic metal-oxide consumption and metal-polymer formation. We show the versatility of this approach using mono- or bi-metallic oxides to access SACs with rich microporosity, tunable mesoscopic structures and atomic coordinating compositions of oxygen and nitrogen in the first coordination-shell. The structures at each level collectively optimize the electronic and geometric structure of the exposed single-atom sites and lower the surface *O formation barriers for efficient and selective peroxidase-type reaction. The unique spatial geometric configuration of the edge-hosted active centers further improves substrate accessibility and substrate-to-catalyst hydrogen overflow due to tunable structural heterogeneity at mesoscopic scales. This strategy opens up new possibilities for engineering more multilevel structures and offers a unique and comprehensive perspective on the design principles of SACs.

2.
J Am Chem Soc ; 146(6): 3585-3590, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38316138

RESUMEN

We report here an expanded porphyrinoid, cyclo[2]pyridine[8]pyrrole, 1, that can exist at three closed-shell oxidation levels. Macrocycle 1 was synthesized via the oxidative coupling of two open chain precursors and fully characterized by means of NMR and UV-vis spectroscopies, MS, and X-ray crystallography. Reduction of the fully oxidized form (1, blue) with NaBH4 produced either the half-oxidized (2, teal) or fully reduced forms (3, pale yellow), depending on the amount of reducing agent used and the presence or absence of air. Reduced products 2 or 3 can be oxidized to 1 by various oxidants (quinones, FeCl3, and AgPF6). Macrocycle 1 also undergoes proton-coupled reductions with I-, Br-, Cl-, SO32-, or S2O32- in the presence of an acid. Certain thiol-containing compounds likewise reduce 1 to 2 or 3. This conversion is accompanied by a readily discernible color change, making cyclo[2]pyridine[8]pyrrole 1 able to differentiate biothiols, such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH).

3.
Proc Natl Acad Sci U S A ; 121(10): e2319136121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38408257

RESUMEN

Single-atom catalysts (SACs) with maximized metal atom utilization and intriguing properties are of utmost importance for energy conversion and catalysis science. However, the lack of a straightforward and scalable synthesis strategy of SACs on diverse support materials remains the bottleneck for their large-scale industrial applications. Herein, we report a general approach to directly transform bulk metals into single atoms through the precise control of the electrodissolution-electrodeposition kinetics in ionic liquids and demonstrate the successful applicability of up to twenty different monometallic SACs and one multimetallic SAC with five distinct elements. As a case study, the atomically dispersed Pt was electrodeposited onto Ni3N/Ni-Co-graphene oxide heterostructures in varied scales (up to 5 cm × 5 cm) as bifunctional catalysts with the electronic metal-support interaction, which exhibits low overpotentials at 10 mA cm-2 for hydrogen evolution reaction (HER, 30 mV) and oxygen evolution reaction (OER, 263 mV) with a relatively low Pt loading (0.98 wt%). This work provides a simple and practical route for large-scale synthesis of various SACs with favorable catalytic properties on diversified supports using alternative ionic liquids and inspires the methodology on precise synthesis of multimetallic single-atom materials with tunable compositions.

4.
Small Methods ; 8(2): e2300429, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37381684

RESUMEN

Over the past few decades, organic-inorganic halide perovskites (OIHPs) as novel photocatalyst materials have attracted intensive attention for an impressive variety of photocatalytic applications due to their excellent photophysical (chemical) properties. Regarding practical application and future commercialization, the air-water stability and photocatalytic performance of OIHPs need to be further improved. Accordingly, studying modification strategies and interfacial interaction mechanisms is crucial. In this review, the current progress in the development and photocatalytic fundamentals of OIHPs is summarized. Furthermore, the structural modification strategies of OIHPs, including dimensionality control, heterojunction design, encapsulation techniques, and so on for the enhancement of charge-carrier transfer and the enlargement of long-term stability, are elucidated. Subsequently, the interfacial mechanisms and charge-carrier dynamics of OIHPs during the photocatalytic process are systematically specified and classified via diverse photophysical and electrochemical characterization methods, such as time-resolved photoluminescence measurements, ultrafast transient absorption spectroscopy, electrochemical impedance spectroscopy measurements, transient photocurrent densities, and so forth. Eventually, various photocatalytic applications of OIHPs, including hydrogen evolution, CO2 reduction, pollutant degradation, and photocatalytic conversion of organic matter.

5.
Int J Biol Macromol ; 258(Pt 2): 128977, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154722

RESUMEN

By employing co-cultivation technique on Komagataeibacter xylinum and Lactococcus lactis subsp. lactis, bacterial cellulose (BC)/nisin films with improved antibacterial activity and mechanical properties were successfully produced. The findings demonstrated that increased nisin production is associated with an upregulation of gene expression. Furthermore, results from Scanning electronic microscopy (SEM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), and Thermogravimetric analysis (TG) confirmed the integration of nisin within BC. While being biocompatible with human cells, the BC/nisin composites exhibited antimicrobial activity. Moreover, mechanical property analyses showed a noticeable improvement in Young's modulus, tensile strength, and elongation at break by 161, 271, and 195 %, respectively. Additionally, the nisin content in fermentation broth was improved by 170 % after co-culture, accompanied by an 8 % increase in pH as well as 10 % decrease in lactate concentration. Real-time reverse transcription PCR analysis revealed an upregulation of 11 nisin-related genes after co-cultivation, with the highest increase in nisA (5.76-fold). To our knowledge, this is the first study which demonstrates that an increase in secondary metabolites after co-culturing is modulated by gene expression. This research offers a cost-effective approach for BC composite production and presents a technique to enhance metabolite concentration through the regulation of relevant genes.


Asunto(s)
Lactococcus lactis , Nisina , Humanos , Nisina/química , Lactococcus lactis/metabolismo , Antibacterianos/metabolismo , Ácido Láctico/metabolismo , Fermentación
6.
Nanoscale ; 15(46): 18901-18909, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37975296

RESUMEN

The application of surface plasmons in heterogeneous catalysis has attracted widespread attention due to their promising potential for harvesting solar energy. The effect of surface adsorbates on catalysts has been well documented in many traditional reactions; nonetheless, their role in plasmonic catalysis has been rarely studied. In this study, an in situ electrochemical surface cleaning strategy is developed and the influence of surface adsorbates on plasmon-enhanced electrochemistry is investigated. Taking Au nanocubes as an example, plasmonic catalysts with clean surfaces are obtained by Cu2O coating and in situ electrochemical etching. During this process, the surface adsorbates of Au nanocubes are removed together with the Cu2O shells. The Au nanocubes with clean surfaces exhibit remarkable performance in plasmon-enhanced electrooxidation of glucose and an enhancement of 445% is demonstrated. The Au NCs with clean surfaces can not only provide more active sites but also avoid halides as hole scavengers, and therefore, the efficient utilization of hot holes by plasmonic excitation is achieved. This process is also generalized to other molecules and applied in electrochemical sensing with high sensitivity. These results highlight the critical role of surface adsorbates in plasmonic catalysis and may forward the design of efficient plasmonic catalysts for plasmon-enhanced electrochemistry.

7.
Front Optoelectron ; 16(1): 27, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37882898

RESUMEN

Infrared solar cells are more effective than normal bandgap solar cells at reducing the spectral loss in the near-infrared region, thus also at broadening the absorption spectra and improving power conversion efficiency. PbS colloidal quantum dots (QDs) with tunable bandgap are ideal infrared photovoltaic materials. However, QD solar cell production suffers from small-area-based spin-coating fabrication methods and unstable QD ink. Herein, the QD ink stability mechanism was fully investigated according to Lewis acid-base theory and colloid stability theory. We further studied a mixed solvent system using dimethylformamide and butylamine, compatible with the scalable manufacture of method-blade coating. Based on the ink system, 100 cm2 of uniform and dense near-infrared PbS QDs (~ 0.96 eV) film was successfully prepared by blade coating. The average efficiencies of above absorber-based devices reached 11.14% under AM1.5G illumination, and the 800 nm-filtered efficiency achieved 4.28%. Both were the top values among blade coating method based devices. The newly developed ink showed excellent stability, and the device performance based on the ink stored for 7 h was similar to that of fresh ink. The matched solvent system for stable PbS QD ink represents a crucial step toward large area blade coating photoelectric devices.

8.
Int J Biol Macromol ; 250: 126267, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567526

RESUMEN

Repeated-batch fermentation with fungal mycelia immobilized in plastic composite support (PCS) eliminates the lag phase during fermentation and improves metabolite productivity. The strategy is implemented herein, and a novel modified PCS is developed to enhance exopolysaccharide (EPS) production from the medicinal fungus Cordyceps militaris. A modified PCS (SYE + PCS) was made by compositing polypropylene (PP) with a nutrient mixture containing soybean hull, peptone, yeast extract, and minerals (SYE+). The use of SYE + PCS has consistent cell productivity throughout the multiple fermentation cycles, which resulted in a more higher cell productivity after second batch compared to unmodified PCS. The cell grown on SYE + PCS also generates a higher yield of EPS (3.36, 6.93, and 5.72 g/L in the first, second, and third fermentation cycles, respectively) up to three-fold higher than the cell immobilized on unmodified PCS. It is also worth noting that the EPS from mycelium grown on SYE + PCS contains up to 2.3-fold higher cordycepin than those on unmodified PCS. The presence of nutrients in SYE + PCS also affects the hydrophobicity and surface roughness of the PC, improving mycelial cell adhesion. This study also provides a preliminary antioxidant activity assessment of EPS from immobilized C. militaris grown with SYE + PCS.

9.
Antioxidants (Basel) ; 12(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37627501

RESUMEN

This study evaluated the antioxidative and anti-inflammatory activities of polysaccharides extracted from unripe Carica papaya L. (papaya) fruit. Three papaya polysaccharide (PP) fractions, namely PP-1, PP-2, and PP-3, with molecular weights of 2252, 2448, and 3741 kDa, containing abundant xylose, galacturonic acid, and mannose constituents, respectively, were obtained using diethylaminoethyl-Sepharose™ anion exchange chromatography. The antioxidant capacity of the PPs, hydroxyl radical scavenging assay, ferrous ion-chelating assay, and reducing power assay revealed that the PP-3 fraction had the highest antioxidant activity, with an EC50 (the concentration for 50% of the maximal effect) of 0.96 mg/mL, EC50 of 0.10 mg/mL, and Abs700 nm of 1.581 for the hydroxyl radical scavenging assay, ferrous ion-chelating assay, and reducing power assay, respectively. In addition, PP-3 significantly decreased reactive oxygen species production by 45.3%, NF-κB activation by 32.0%, and tumor necrosis factor-alpha and interleukin-6 generation by 33.5% and 34.4%, respectively, in H2O2-induced human epidermal keratinocytes. PP-3 exerts potent antioxidative and anti-inflammatory effects; thus, it is a potential biofunctional ingredient in the cosmetic industry.

10.
Nano Lett ; 23(14): 6465-6473, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37413789

RESUMEN

Mixed-halide perovskites enable precise spectral tuning across the entire spectral range through composition engineering. However, mixed halide perovskites are susceptible to ion migration under continuous illumination or electric field, which significantly impedes the actual application of perovskite light-emitting diodes (PeLEDs). Here, we demonstrate a novel approach to introduce strong and homogeneous halogen bonds within the quasi-two-dimensional perovskite lattices by means of an interlayer locking structure, which effectively suppresses ion migration by increasing the corresponding activation energy. Various characterizations confirmed that intralattice halogen bonds enhance the stability of quasi-2D mixed-halide perovskite films. Here, we report that the PeLEDs exhibit an impressive 18.3% EQE with pure red emission with CIE color coordinate of (0.67, 0.33) matching Rec. 2100 standards and demonstrate an operational half-life of ∼540 min at an initial luminance of 100 cd m-2, representing one of the most stable mixed-halide pure red PeLEDs reported to date.

11.
Research (Wash D C) ; 6: 0142, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214200

RESUMEN

Sustainable and low-carbon-emission silicon production is currently one of the main focuses for the metallurgical and materials science communities. Electrochemistry, considered a promising strategy, has been explored to produce silicon due to prominent advantages: (a) high electricity utilization efficiency; (b) low-cost silica as a raw material; and (c) tunable morphologies and structures, including films, nanowires, and nanotubes. This review begins with a summary of early research on the extraction of silicon by electrochemistry. Emphasis has been placed on the electro-deoxidation and dissolution-electrodeposition of silica in chloride molten salts since the 21st century, including the basic reaction mechanisms, the fabrication of photoactive Si films for solar cells, the design and production of nano-Si and various silicon components for energy conversion, as well as storage applications. Besides, the feasibility of silicon electrodeposition in room-temperature ionic liquids and its unique opportunities are evaluated. On this basis, the challenges and future research directions for silicon electrochemical production strategies are proposed and discussed, which are essential to achieve large-scale sustainable production of silicon by electrochemistry.

12.
Angew Chem Int Ed Engl ; 62(21): e202302184, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36866612

RESUMEN

Mixed-halide perovskites are considered the most straightforward candidate to realize blue perovskite light-emitting diodes (PeLEDs). However, they suffer severe halide migration, leading to spectral instability, which is particularly exaggerated in high chloride alloying perovskites. Here, we demonstrate energy barrier of halide migration can be tuned by manipulating the degree of local lattice distortion (LLD). Enlarging the LLD degree to a suitable level can increase the halide migration energy barrier. We herein report an "A-site" cation engineering to tune the LLD degree to an optimal level. DFT simulation and experimental data confirm that LLD manipulation suppresses the halide migration in perovskites. Conclusively, mixed-halide blue PeLEDs with a champion EQE of 14.2 % at 475 nm have been achieved. Moreover, the devices exhibit excellent operational spectral stability (T50 of 72 min), representing one of the most efficient and stable pure-blue PeLEDs reported yet.

13.
Int J Biol Macromol ; 234: 123680, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801225

RESUMEN

Bacterial cellulose (BC) is used in biomedical applications due to its unique material properties such as mechanical strength with a high water-absorbing capacity and biocompatibility. Nevertheless, native BC lacks porosity control which is crucial for regenerative medicine. Hence, developing a simple technique to change the pore sizes of BC has become an important issue. This study combined current foaming BC (FBC) production with incorporation of different additives (avicel, carboxymethylcellulose, and chitosan) to form novel porous additive-altered FBC. Results demonstrated that the FBC samples provided greater reswelling rates (91.57 % ~ 93.67 %) compared to BC samples (44.52 % ~ 67.5 %). Moreover, the FBC samples also showed excellent cell adhesion and proliferation abilities for NIH-3T3 cells. Lastly, FBC allowed cells to penetrate to deep layers for cell adhesion due to its porous structure, providing a competitive scaffold for 3D cell culture in tissue engineering.


Asunto(s)
Celulosa , Ingeniería de Tejidos , Ratones , Animales , Celulosa/química , Porosidad , Ingeniería de Tejidos/métodos , Adhesión Celular , Técnicas de Cultivo Tridimensional de Células , Andamios del Tejido/química , Materiales Biocompatibles/química
14.
Int J Biol Macromol ; 231: 123322, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36690234

RESUMEN

Numerous studies have reported various approaches for synthesizing phosphate-capturing adsorbents to mitigate eutrophication. Despite the efforts, concerns about production cost, the complexity of synthesis steps, environmental friendliness, and applicability in industrial settings continue to be a problem. Herein, phosphate-selective composite adsorbents were prepared by incorporating alginate (Alg) with MIL100 and MIL101 to produce the MIL100/Alg and MIL101/Alg beads, where Fe3+ served as the crosslinker. The unsaturated coordination bond of MIL100 and MIL101 serves as a Lewis acid that can attract phosphate. The adsorption equilibrium isotherm, uptake kinetics, and effects of operating parameters were studied. The phosphate adsorption capacity of MIL100/Alg (103.3 mg P/g) and MIL101/Alg (109.5 mg P/g) outperformed their constituting components at pH 6 and 30 °C. Detailed evaluation of the adsorbent porosity using N2 sorption reveals the formation of mesoporous structures on the Alg network upon incorporation of MIL100 and MIL101. The composite adsorbents have excellent selectivity toward anionic phosphate and can be easily regenerated. Phosphate adsorption by MIL100/Alg and MIL101/Alg was driven by electrostatic attraction and ligand exchange. Preliminary economic analysis on the synthesis of the adsorbents indicates that the composites, MIL100/Alg and MIL101/Alg, are economically viable adsorbents.


Asunto(s)
Alginatos , Contaminantes Químicos del Agua , Alginatos/química , Fosfatos/química , Agua/química , Cinética , Adsorción , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/química
15.
Adv Mater ; 35(2): e2207835, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36245308

RESUMEN

An environmentally friendly mixed-halide perovskite MA3 Bi2 Cl9- x Ix with a bandgap funnel structure has been developed. However, the dynamic interfacial interactions of bandgap funneling in MA3 Bi2 Cl9- x Ix perovskites in the photoelectrochemical (PEC) system remain ambiguous. In light of this, single- and mixed-halide lead-free bismuth-based hybrid perovskites-MA3 Bi2 Cl9- y Iy and MA3 Bi2 I9 (named MBCl-I and MBI)-in the presence and absence of the bandgap funnel structure, respectively, are prepared. Using temperature-dependent transient photoluminescence and electrochemical voltammetric techniques, the photophysical and (photo)electrochemical phenomena of solid-solid and solid-liquid interfaces for MBCl-I and MBI halide perovskites are therefore confirmed. Concerning the mixed-halide hybrid perovskites MBCl-I with a bandgap funnel structure, stronger electronic coupling arising from an enhanced overlap of electronic wavefunctions results in more efficient exciton transport. Besides, MBCl-I's effective diffusion coefficient and electron-transfer rate demonstrate efficient heterogeneous charge transfer at the solid-liquid interface, generating improved photoelectrochemical hydrogen production. Consequently, this combination of photophysical and electrochemical techniques opens up an avenue to explore the intrinsic and interfacial properties of semiconductor materials for elucidating the correlation between material characterization and device performance.

16.
Molecules ; 27(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36500218

RESUMEN

Pickled radish (Raphanus sativus) is a traditional Asian ingredient, but the traditional method takes decades to make this product. To optimize such a process, this study compared the saponin content of pickled radishes with different thermal processing and traditional processes (production time of 7 days, 10 years, and 20 years) and evaluated the effects of different thermal processes on the formation of radish saponin through kinetics study and mass spectrometry. The results showed that increasing the pickling time enhanced the formation of saponin in commercial pickled radishes (25 °C, 7 days, 6.50 ± 1.46 mg g-1; 3650 days, 23.11 ± 1.22 mg g-1), but these increases were lower than those induced by thermal processing (70 °C 30 days 24.24 ± 1.01 mg g-1). However, it was found that the pickling time of more than 10 years and the processing temperature of more than 80 °C reduce the saponin content. Liquid chromatography-mass spectrometry (LC-MS) analysis showed that the major saponin in untreated radish was Tupistroside G, whereas treated samples contained Asparagoside A and Timosaponin A1. Moreover, this study elucidated the chemical structure of saponins in TPR. The findings indicated that thermal treatment could induce functional saponin conversion in plants, and such a mechanism can also be used to improve the health efficacy of plant-based crops.


Asunto(s)
Brassicaceae , Raphanus , Saponinas , Raíces de Plantas/química , Saponinas/análisis , Extractos Vegetales/química
17.
ACS Appl Mater Interfaces ; 14(49): 55183-55191, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36469437

RESUMEN

An organic-inorganic hybrid perovskite nanowire (NW), CH3NH3PbI3, shows great potential for high-performance photodetectors due to its excellent photoresponse. However, the inefficient carrier collection between the one-dimensional (1D) NWs and metallic electrodes, as well as degradation of the perovskite, limits the viability of the CH3NH3PbI3 NWs for commercial production. Here, we demonstrate a photodetector with a mixed-dimensional van der Waals heterostructure of hexagonal boron nitride (hBN)/graphene (Gr)/1D CH3NH3PbI3, which exhibits excellent responsivity and specific detectivity of up to 558 A/W and 2.3 × 1012 Jones, owing to the improved carrier extraction at the electrical contact between Gr and the NW. As for the atomic encapsulation of hBN, the device is extremely robust and maintains its outstanding performance for more than 2 months when exposed to air. Moreover, benefitting from the 1D geometry of the CH3NH3PbI3 NW, our device is highly sensitive to polarized light. The mixed-dimensional van der Waals heterostructure, hBN/Gr/1D CH3NH3PbI3, would provide a novel idea and protocol for fabricating high-performance and air-stable photoelectronic devices based on organic-inorganic hybrid perovskite NWs.

18.
Crit Rev Biotechnol ; : 1-16, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36424845

RESUMEN

Bioelectrochemical systems such as microbial fuel cells (MFCs) have gained extensive attention due to their abilities to simultaneously treat wastewater and generate renewable energy resources. Recently, to boost the system performance, the photoelectrode has been incorporated into MFCs for effectively exploiting the synergistic interaction between light and microorganisms, and the resultant device is known as photo-assisted microbial fuel cells (photo-MFCs). Combined with the metabolic reaction of organic compounds by microorganisms, photo-MFCs are capable of simultaneously converting both chemical energy and light energy into electricity. This article aims to systematically review the recent advances in photo-MFCs, including the introduction of specific photosynthetic microorganisms used in photo-MFCs followed by the discussion of the fundamentals and configurations of photo-MFCs. Moreover, the materials used for photoelectrodes and their fabrication approaches are also explored. This review has shown that the innovative strategy of utilizing photoelectrodes in photo-MFCs is promising and further studies are warranted to strengthen the system stability under long-term operation for advancing practical application.

19.
Appl Microbiol Biotechnol ; 106(23): 7737-7750, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36329134

RESUMEN

Atmospheric cold plasma (ACP) is a nonthermal technology that is extensively used in several industries. Within the scopes of engineering and biotechnology, some notable applications of ACP include waste management, material modification, medicine, and agriculture. Notwithstanding numerous applications, ACP still encounters a number of challenges such as diverse types of plasma generators and sizes, causing standardization challenges. This review focuses on the uses of ACP in engineering and biotechnology sectors in which the innovation can positively impact the operation process, enhance safety, and reduce cost. Additionally, its limitations are examined. Since ACP is still in its nascent stage, the review will also propose potential research opportunities that can help scientists gain more insights on the technology. KEY POINTS: • ACP technology has been used in agriculture, medical, and bioprocessing industries. • Chemical study on the reactive species is crucial to produce function-specific ACP. • Different ACP devices and conditions still pose standardization problems.


Asunto(s)
Gases em Plasma , Agricultura
20.
Nanomaterials (Basel) ; 12(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36364631

RESUMEN

Infections caused by multidrug-resistant (MDR) bacteria are becoming a serious threat to public health worldwide. With an ever-reducing pipeline of last-resort drugs further complicating the current dire situation arising due to antibiotic resistance, there has never been a greater urgency to attempt to discover potential new antibiotics. The use of nanotechnology, encompassing a broad range of organic and inorganic nanomaterials, offers promising solutions. Organic nanomaterials, including lipid-, polymer-, and carbon-based nanomaterials, have inherent antibacterial activity or can act as nanocarriers in delivering antibacterial agents. Nanocarriers, owing to the protection and enhanced bioavailability of the encapsulated drugs, have the ability to enable an increased concentration of a drug to be delivered to an infected site and reduce the associated toxicity elsewhere. On the other hand, inorganic metal-based nanomaterials exhibit multivalent antibacterial mechanisms that combat MDR bacteria effectively and reduce the occurrence of bacterial resistance. These nanomaterials have great potential for the prevention and treatment of MDR bacterial infection. Recent advances in the field of nanotechnology are enabling researchers to utilize nanomaterial building blocks in intriguing ways to create multi-functional nanocomposite materials. These nanocomposite materials, formed by lipid-, polymer-, carbon-, and metal-based nanomaterial building blocks, have opened a new avenue for researchers due to the unprecedented physiochemical properties and enhanced antibacterial activities being observed when compared to their mono-constituent parts. This review covers the latest advances of nanotechnologies used in the design and development of nano- and nanocomposite materials to fight MDR bacteria with different purposes. Our aim is to discuss and summarize these recently established nanomaterials and the respective nanocomposites, their current application, and challenges for use in applications treating MDR bacteria. In addition, we discuss the prospects for antimicrobial nanomaterials and look forward to further develop these materials, emphasizing their potential for clinical translation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...