Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 9(10)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775156

RESUMEN

Since its emergence, SARS-CoV-2 has been continuously evolving, hampering the effectiveness of current vaccines against COVID-19. mAbs can be used to treat patients at risk of severe COVID-19. Thus, the development of broadly protective mAbs and an understanding of the underlying protective mechanisms are of great importance. Here, we isolated mAbs from donors with breakthrough infection with Omicron subvariants using a single-B cell screening platform. We identified a mAb, O5C2, which possesses broad-spectrum neutralization and antibody-dependent cell-mediated cytotoxic activities against SARS-CoV-2 variants, including EG.5.1. Single-particle analysis by cryo-electron microscopy revealed that O5C2 targeted an unusually large epitope within the receptor-binding domain of spike protein that overlapped with the angiotensin-converting enzyme 2 binding interface. Furthermore, O5C2 effectively protected against BA.5 Omicron infection in vivo by mediating changes in transcriptomes enriched in genes involved in apoptosis and interferon responses. Our findings provide insights into the development of pan-protective mAbs against SARS-CoV-2.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/inmunología , Humanos , COVID-19/inmunología , COVID-19/virología , Anticuerpos Antivirales/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Animales , Ratones , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Microscopía por Crioelectrón , Epítopos/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Femenino
2.
Cell ; 187(5): 1296-1311.e26, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38428397

RESUMEN

Most membrane proteins are modified by covalent addition of complex sugars through N- and O-glycosylation. Unlike proteins, glycans do not typically adopt specific secondary structures and remain very mobile, shielding potentially large fractions of protein surface. High glycan conformational freedom hinders complete structural elucidation of glycoproteins. Computer simulations may be used to model glycosylated proteins but require hundreds of thousands of computing hours on supercomputers, thus limiting routine use. Here, we describe GlycoSHIELD, a reductionist method that can be implemented on personal computers to graft realistic ensembles of glycan conformers onto static protein structures in minutes. Using molecular dynamics simulation, small-angle X-ray scattering, cryoelectron microscopy, and mass spectrometry, we show that this open-access toolkit provides enhanced models of glycoprotein structures. Focusing on N-cadherin, human coronavirus spike proteins, and gamma-aminobutyric acid receptors, we show that GlycoSHIELD can shed light on the impact of glycans on the conformation and activity of complex glycoproteins.


Asunto(s)
Glicoproteínas , Simulación de Dinámica Molecular , Humanos , Microscopía por Crioelectrón , Glicoproteínas/química , Glicosilación , Polisacáridos/química
3.
J Biol Chem ; 300(1): 105553, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072060

RESUMEN

Proteins can spontaneously tie a variety of intricate topological knots through twisting and threading of the polypeptide chains. Recently developed artificial intelligence algorithms have predicted several new classes of topological knotted proteins, but the predictions remain to be authenticated experimentally. Here, we showed by X-ray crystallography and solution-state NMR spectroscopy that Q9PR55, an 89-residue protein from Ureaplasma urealyticum, possesses a novel 71 knotted topology that is accurately predicted by AlphaFold 2, except for the flexible N terminus. Q9PR55 is monomeric in solution, making it the smallest and most complex knotted protein known to date. In addition to its exceptional chemical stability against urea-induced unfolding, Q9PR55 is remarkably robust to resist the mechanical unfolding-coupled proteolysis by a bacterial proteasome, ClpXP. Our results suggest that the mechanical resistance against pulling-induced unfolding is determined by the complexity of the knotted topology rather than the size of the molecule.


Asunto(s)
Inteligencia Artificial , Proteínas Bacterianas , Pliegue de Proteína , Ureaplasma urealyticum , Modelos Moleculares , Péptidos , Proteínas Bacterianas/química , Estructura Terciaria de Proteína
4.
Mol Ther ; 31(11): 3322-3336, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37689971

RESUMEN

The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in the emergence of new variants that are resistant to existing vaccines and therapeutic antibodies, has raised the need for novel strategies to combat the persistent global COVID-19 epidemic. In this study, a monoclonal anti-human angiotensin-converting enzyme 2 (hACE2) antibody, ch2H2, was isolated and humanized to block the viral receptor-binding domain (RBD) binding to hACE2, the major entry receptor of SARS-CoV-2. This antibody targets the RBD-binding site on the N terminus of hACE2 and has a high binding affinity to outcompete the RBD. In vitro, ch2H2 antibody showed potent inhibitory activity against multiple SARS-CoV-2 variants, including the most antigenically drifted and immune-evading variant Omicron. In vivo, adeno-associated virus (AAV)-mediated delivery enabled a sustained expression of monoclonal antibody (mAb) ch2H2, generating a high concentration of antibodies in mice. A single administration of AAV-delivered mAb ch2H2 significantly reduced viral RNA load and infectious virions and mitigated pulmonary pathological changes in mice challenged with SARS-CoV-2 Omicron BA.5 subvariant. Collectively, the results suggest that AAV-delivered hACE2-blocking antibody provides a promising approach for developing broad-spectrum antivirals against SARS-CoV-2 and potentially other hACE2-dependent pathogens that may emerge in the future.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos ampliamente neutralizantes , COVID-19 , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/genética , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales , COVID-19/terapia , Dependovirus/genética , ARN Viral , SARS-CoV-2/genética , Anticuerpos ampliamente neutralizantes/farmacología , Anticuerpos ampliamente neutralizantes/uso terapéutico
5.
FEBS J ; 289(3): 730-747, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34499806

RESUMEN

Specific antibody interactions with short peptides have made epitope tagging systems a vital tool employed in virtually all fields of biological research. Here, we present a novel epitope tagging system comprised of a monoclonal antibody named GD-26, which recognises the TD peptide (GTGATPADD) derived from Haloarcula marismortui bacteriorhodopsin I (HmBRI) D94N mutant. The crystal structure of the antigen-binding fragment (Fab) of GD-26 complexed with the TD peptide was determined to a resolution of 1.45 Å. The TD peptide was found to adopt a 310 helix conformation within the binding cleft, providing a characteristic peptide structure for recognition by GD-26 Fab. Based on the structure information, polar and nonpolar forces collectively contribute to the strong binding. Attempts to engineer the TD peptide show that the proline residue is crucial for the formation of the 310 helix in order to fit into the binding cleft. Isothermal calorimetry (ITC) reported a dissociation constant KD of 12 ± 2.8 nm, indicating a strong interaction between the TD peptide and GD-26 Fab. High specificity of GD-26 IgG to the TD peptide was demonstrated by western blotting, ELISA and immunofluorescence as only TD-tagged proteins were detected, suggesting the effectiveness of the GD-26/TD peptide tagging system. In addition to already-existing epitope tags such as the FLAG tag and the ALFA tag adopting either extended or α-helix conformations, the unique 310 helix conformation of the TD peptide together with the corresponding monoclonal antibody GD-26 offers a novel tagging option for research.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Bacteriorodopsinas/inmunología , Epítopos/inmunología , Péptidos/inmunología , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/ultraestructura , Especificidad de Anticuerpos/genética , Bacteriorodopsinas/genética , Bacteriorodopsinas/ultraestructura , Cristalografía por Rayos X , Ensayo de Inmunoadsorción Enzimática , Epítopos/genética , Epítopos/ultraestructura , Haloarcula marismortui/inmunología , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/ultraestructura , Péptidos/genética
6.
Enzyme Microb Technol ; 139: 109585, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32732034

RESUMEN

The undecaprenyl pyrophosphate phosphatase (UppP) is an integral membrane pyrophosphatase. In bacteria, UppP catalyzes the dephosphorylation of undecaprenyl pyrophosphate (C55-pp) to undecaprenyl phosphate (C55-P) in the periplasmic space, which is an essential step for the isoprenyl lipid carrier to reenter the peptidoglycan synthesis cycle. Besides bacteria, the UppP homologs are widely distributed in archaea genome. However, all archaea lack peptidoglycan structure in their cell wall components, and the major archaeal lipid carriers are dolichol phosphate (Dol-p) and dolichol pyrophosphate (Dol-pp), so the functions of the UppP homolog in archaea remain unclear. Here, we purified a recombinant polyisoprenyl pyrophosphatase of a thermoacidophilic archaeon, Saccharolobus solfataricus (SsUppP), and characterized its enzymatic properties. Two isoprenyl pyrophosphate, farnesyl pyrophosphate (Fpp) and geranylgeranyl pyrophosphate (Ggpp), were used as the surrogate substrates, simulating the bacterial and archaeal lipid carriers. SsUppP dephosphorylated Fpp and Ggpp at 37 °C, but retained the phosphatase activity at high temperatures. The optimal condition for the enzymatic activity was found to be at pH 7 and 70 °C. The thermostability of SsUppP was also supported by molecular dynamics simulation studies. Our results indicated that the archaeal SsUppP can dephosphorylate isoprenyl pyrophosphates at the natural environment of high temperature, and the possibility to catalyze the dephosphorylation of archaeal lipid carriers.


Asunto(s)
Archaea/enzimología , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Proteínas Arqueales/metabolismo , Membrana Celular/metabolismo , Estabilidad de Enzimas , Calor , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Sesquiterpenos/metabolismo
7.
Biophys J ; 116(8): 1469-1482, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30979552

RESUMEN

Heterogeneous distribution of components in the biological membrane is critical in the process of cell polarization. However, little is known about the mechanisms that can generate and maintain the heterogeneous distribution of the membrane components. Here, we report that the propagating wave patterns of the bacterial Min proteins can impose steric pressure on the membrane, resulting in transport and directional accumulation of the component in the membrane. Therefore, the membrane component waves represent transport of the component in the membrane that is caused by the steric pressure gradient induced by the differential levels of binding and dissociation of the Min proteins in the propagating waves on the membrane surface. The diffusivity, majorly influenced by the membrane anchor of the component, and the repulsed ability, majorly influenced by the steric property of the membrane component, determine the differential spatial distribution of the membrane component. Thus, transportation of the membrane component by the Min proteins follows a simple physical principle, which resembles a linear peristaltic pumping process, to selectively segregate and maintain heterogeneous distribution of materials in the membrane. VIDEO ABSTRACT.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Transporte Biológico Activo , Cinética , Modelos Biológicos
8.
J Biol Chem ; 290(49): 29567-77, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26483542

RESUMEN

Retinal bound light-driven proton pumps are widespread in eukaryotic and prokaryotic organisms. Among these pumps, bacteriorhodopsin (BR) proteins cooperate with ATP synthase to convert captured solar energy into a biologically consumable form, ATP. In an acidic environment or when pumped-out protons accumulate in the extracellular region, the maximum absorbance of BR proteins shifts markedly to the longer wavelengths. These conditions affect the light-driven proton pumping functional exertion as well. In this study, wild-type crystal structure of a BR with optical stability under wide pH range from a square halophilic archaeon, Haloquadratum walsbyi (HwBR), was solved in two crystal forms. One crystal form, refined to 1.85 Å resolution, contains a trimer in the asymmetric unit, whereas another contains an antiparallel dimer was refined at 2.58 Å. HwBR could not be classified into any existing subgroup of archaeal BR proteins based on the protein sequence phylogenetic tree, and it showed unique absorption spectral stability when exposed to low pH values. All structures showed a unique hydrogen-bonding network between Arg(82) and Thr(201), linking the BC and FG loops to shield the retinal-binding pocket in the interior from the extracellular environment. This result was supported by R82E mutation that attenuated the optical stability. The negatively charged cytoplasmic side and the Arg(82)-Thr(201) hydrogen bond may play an important role in the proton translocation trend in HwBR under acidic conditions. Our findings have unveiled a strategy adopted by BR proteins to solidify their defenses against unfavorable environments and maintain their optical properties associated with proton pumping.


Asunto(s)
Archaea/metabolismo , Proteínas Arqueales/metabolismo , Bacteriorodopsinas/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Citoplasma/metabolismo , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Transporte Iónico , Luz , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Óptica y Fotónica , Filogenia , Ingeniería de Proteínas , Protones , Homología de Secuencia de Aminoácido , Espectrofotometría Ultravioleta , Electricidad Estática
9.
Sci Rep ; 5: 15086, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26462555

RESUMEN

In silico algorithms have been the common approach for transmembrane (TM) protein topology prediction. However, computational tools may produce questionable results and experimental validation has proven difficult. Although biochemical strategies are available to determine the C-terminal orientation of TM proteins, experimental strategies to determine the N-terminal orientation are still limited but needed because the N-terminal end is essential for membrane targeting. Here, we describe a new and easy method to effectively determine the N-terminal orientation of the target TM proteins in Escherichia coli plasma membrane environment. D94N, the mutant of bacteriorhodopsin from Haloarcula marismortui, can be a fusion partner to increase the production of the target TM proteins if their N-termini are in cytoplasm (Nin orientation). To create a suitable linker for orientating the target TM proteins with the periplasmic N-termini (Nout orientation) correctly, we designed a three-TM-helix linker fused at the C-terminus of D94N fusion partner (termed D94N-3TM) and found that D94N-3TM can specifically improve the production of the Nout target TM proteins. In conclusion, D94N and D94N-3TM fusion partners can be applied to determine the N-terminal end of the target TM proteins oriented either Nin or Nout by evaluating the net expression of the fusion proteins.


Asunto(s)
Membrana Celular/química , Membrana Celular/ultraestructura , Escherichia coli/química , Escherichia coli/ultraestructura , Proteínas de la Membrana/química , Proteínas de la Membrana/ultraestructura , Secuencia de Aminoácidos , Membrana Celular/fisiología , Simulación por Computador , Escherichia coli/genética , Proteínas de la Membrana/genética , Modelos Químicos , Modelos Genéticos , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/ultraestructura
10.
J Biol Chem ; 289(27): 18719-35, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24855653

RESUMEN

Undecaprenyl pyrophosphate phosphatase (UppP), an integral membrane protein, catalyzes the dephosphorylation of undecaprenyl pyrophosphate to undecaprenyl phosphate, which is an essential carrier lipid in the bacterial cell wall synthesis. Sequence alignment reveals two consensus regions, containing glutamate-rich (E/Q)XXXE plus PGXSRSXXT motifs and a histidine residue, specific to the bacterial UppP enzymes. The predicted topological model suggests that both of these regions are localized near the aqueous interface of UppP and face the periplasm, implicating that its enzymatic function is on the outer side of the plasma membrane. The mutagenesis analysis demonstrates that most of the mutations (E17A/E21A, H30A, S173A, R174A, and T178A) within the consensus regions are completely inactive, indicating that the catalytic site of UppP is constituted by these two regions. Enzymatic analysis also shows an absolute requirement of magnesium or calcium ions in enzyme activity. The three-dimensional structural model and molecular dynamics simulation studies have shown a plausible structure of the catalytic site of UppP and thus provides insights into the molecular basis of the enzyme-substrate interaction in membrane bilayers.


Asunto(s)
Escherichia coli/enzimología , Lípidos de la Membrana/metabolismo , Pirofosfatasas/química , Pirofosfatasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Biocatálisis , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/metabolismo , Metales/farmacología , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Estructura Secundaria de Proteína , Pirofosfatasas/genética , Relación Estructura-Actividad
11.
PLoS One ; 8(2): e56363, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23457558

RESUMEN

Membrane proteins are key targets for pharmacological intervention because of their vital functions. Structural and functional studies of membrane proteins have been severely hampered because of the difficulties in producing sufficient quantities of properly folded and biologically active proteins. Here we generate a high-level expression system of integral membrane proteins in Escherichia coli by using a mutated bacteriorhodopsin (BR) from Haloarcula marismortui (HmBRI/D94N) as a fusion partner. A purification strategy was designed by incorporating a His-tag on the target membrane protein for affinity purification and an appropriate protease cleavage site to generate the final products. The fusion system can be used to detect the intended target membrane proteins during overexpression and purification either with the naked eye or by directly monitoring their characteristic optical absorption. In this study, we applied this approach to produce two functional integral membrane proteins, undecaprenyl pyrophosphate phosphatase and carnitine/butyrobetaine antiporter with significant yield enhancement. This technology could facilitate the development of a high-throughput strategy to screen for conditions that improve the yield of correctly folded target membrane proteins. Other robust BRs can also be incorporated in this system.


Asunto(s)
Bacteriorodopsinas/genética , Escherichia coli/genética , Ingeniería Genética/métodos , Haloarcula marismortui/genética , Proteínas de Transporte de Catión Orgánico/genética , Pirofosfatasas/genética , Proteínas Recombinantes de Fusión/genética , Secuencia de Aminoácidos , Bacteriorodopsinas/química , Expresión Génica , Histidina , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Transporte de Catión Orgánico/química , Proteínas de Transporte de Catión Orgánico/aislamiento & purificación , Proteínas de Transporte de Catión Orgánico/metabolismo , Estructura Secundaria de Proteína , Proteolisis , Pirofosfatasas/química , Pirofosfatasas/aislamiento & purificación , Pirofosfatasas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo
12.
Proteins ; 78(14): 2973-83, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20737588

RESUMEN

Kinetic measurement of protein folding is limited by the method used to trigger folding. Traditional methods, such as stopped flow, have a long mixing dead time and cannot be used to monitor fast folding processes. Here, we report a compound, 4-(bromomethyl)-6,7-dimethoxycoumarin, that can be used as a "photolabile cage" to study the early stages of protein folding. The folding process of a protein, RD1, including kinetics, enthalpy, and volume change, was studied by the combined use of a phototriggered caging strategy and time-resolved photoacoustic calorimetry. The cage caused unfolding of the photolabile protein, and then a pulse UV laser (∼10(-9) s) was used to break the cage, leaving the protein free to refold and allowing the resolving of two folding events on a nanosecond time scale. This strategy is especially good for monitoring fast folding proteins that cannot be studied by traditional methods.


Asunto(s)
Proteínas Anticongelantes Tipo III/química , Cumarinas/química , Rayos Láser , Pliegue de Proteína , Rayos Ultravioleta , Secuencia de Aminoácidos , Calorimetría , Dicroismo Circular , Simulación por Computador , Cinética , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
J Biol Chem ; 284(12): 7646-55, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19144641

RESUMEN

Human coxsackievirus (CV) belongs to the picornavirus family, which consists of over 200 medically relevant viruses. In picornavirus, a chymotrypsin-like protease (3C(pro)) is required for viral replication by processing the polyproteins, and thus it is regarded as an antiviral drug target. A 3C-like protease (3CL(pro)) also exists in human coronaviruses (CoV) such as 229E and the one causing severe acute respiratory syndrome (SARS). To combat SARS, we previously had developed peptidomimetic and zinc-coordinating inhibitors of 3CL(pro). As shown in the present study, some of these compounds were also found to be active against 3C(pro) of CV strain B3 (CVB3). Several crystal structures of 3C(pro) from CVB3 and 3CL(pro) from CoV-229E and SARS-CoV in complex with the inhibitors were solved. The zinc-coordinating inhibitor is tetrahedrally coordinated to the His(40)-Cys(147) catalytic dyad of CVB3 3C(pro). The presence of specific binding pockets for the residues of peptidomimetic inhibitors explains the binding specificity. Our results provide a structural basis for inhibitor optimization and development of potential drugs for antiviral therapies.


Asunto(s)
Materiales Biomiméticos/química , Cisteína Endopeptidasas/química , Inhibidores de Cisteína Proteinasa/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Proteínas Virales/química , Zinc/química , Sitios de Unión , Materiales Biomiméticos/uso terapéutico , Proteasas 3C de Coronavirus , Inhibidores de Cisteína Proteinasa/uso terapéutico , Humanos , Estructura Terciaria de Proteína , Síndrome Respiratorio Agudo Grave/tratamiento farmacológico , Síndrome Respiratorio Agudo Grave/enzimología , Relación Estructura-Actividad , Proteínas Virales/antagonistas & inhibidores
14.
FEBS Lett ; 581(28): 5454-8, 2007 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-17981158

RESUMEN

Five active metal-conjugated inhibitors (PMA, TDT, EPDTC, JMF1586 and JMF1600) bound with the 3C-like protease of severe acute respiratory syndrome (SARS)-associated coronavirus were analyzed crystallographically. The complex structures reveal two major inhibition modes: Hg(2+)-PMA is coordinated to C(44), M(49) and Y(54) with a square planar geometry at the S3 pocket, whereas each Zn(2+) of the four zinc-inhibitors is tetrahedrally coordinated to the H(41)-C(145) catalytic dyad. For anti-SARS drug design, this Zn(2+)-centered coordination pattern would serve as a starting platform for inhibitor optimization.


Asunto(s)
Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Proteínas Virales/antagonistas & inhibidores , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Modelos Moleculares , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
16.
J Med Chem ; 49(16): 4971-80, 2006 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-16884309

RESUMEN

A potent SARS coronavirus (CoV) 3CL protease inhibitor (TG-0205221, Ki = 53 nM) has been developed. TG-0205221 showed remarkable activity against SARS CoV and human coronavirus (HCoV) 229E replications by reducing the viral titer by 4.7 log (at 5 microM) for SARS CoV and 5.2 log (at 1.25 microM) for HCoV 229E. The crystal structure of TG-0205221 (resolution = 1.93 A) has revealed a unique binding mode comprising a covalent bond, hydrogen bonds, and numerous hydrophobic interactions. Structural comparisons between TG-0205221 and a natural peptide substrate were also discussed. This information may be applied toward the design of other 3CL protease inhibitors.


Asunto(s)
Antivirales/síntesis química , Carbamatos/síntesis química , Cisteína Endopeptidasas/química , Dipéptidos/síntesis química , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/química , Animales , Antivirales/química , Antivirales/farmacología , Carbamatos/química , Carbamatos/farmacología , Línea Celular , Chlorocebus aethiops , Coronavirus Humano 229E/efectos de los fármacos , Proteasas 3C de Coronavirus , Cristalografía por Rayos X , Dipéptidos/química , Dipéptidos/farmacología , Estabilidad de Medicamentos , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Modelos Moleculares , Estructura Molecular , Ratas , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
17.
J Biol Chem ; 280(35): 31257-66, 2005 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-15788388

RESUMEN

Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by a novel human coronavirus. Viral maturation requires a main protease (3CL(pro)) to cleave the virus-encoded polyproteins. We report here that the 3CL(pro) containing additional N- and/or C-terminal segments of the polyprotein sequences undergoes autoprocessing and yields the mature protease in vitro. The dimeric three-dimensional structure of the C145A mutant protease shows that the active site of one protomer binds with the C-terminal six amino acids of the protomer from another asymmetric unit, mimicking the product-bound form and suggesting a possible mechanism for maturation. The P1 pocket of the active site binds the Gln side chain specifically, and the P2 and P4 sites are clustered together to accommodate large hydrophobic side chains. The tagged C145A mutant protein served as a substrate for the wild-type protease, and the N terminus was first digested (55-fold faster) at the Gln(-1)-Ser1 site followed by the C-terminal cleavage at the Gln306-Gly307 site. Analytical ultracentrifuge of the quaternary structures of the tagged and mature proteases reveals the remarkably tighter dimer formation for the mature enzyme (K(d) = 0.35 nm) than for the mutant (C145A) containing 10 extra N-terminal (K(d) = 17.2 nM) or C-terminal amino acids (K(d) = 5.6 nM). The data indicate that immature 3CL(pro) can form dimer enabling it to undergo autoprocessing to yield the mature enzyme, which further serves as a seed for facilitated maturation. Taken together, this study provides insights into the maturation process of the SARS 3CL(pro) from the polyprotein and design of new structure-based inhibitors.


Asunto(s)
Endopeptidasas/química , Endopeptidasas/metabolismo , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Proteínas Virales/química , Proteínas Virales/metabolismo , Sitios de Unión , Proteasas 3C de Coronavirus , Cristalografía por Rayos X , Cisteína Endopeptidasas , Endopeptidasas/genética , Humanos , Modelos Moleculares , Estructura Molecular , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...