Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Plant Res ; 136(3): 333-348, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36930386

RESUMEN

The systematics of the Old World Spiranthes sinensis (Pers.) Ames species complex (Orchidaceae) has been complicated by its wide distribution and morphological variations. Within the species complex, S. australis Lindl. has been generally accepted as the only Spiranthes Rich. species distributed on the Japanese mainland. The present study provides morphological, phylogenetic, and ecological evidence for the recognition of S. hachijoensis Suetsugu as a new species of the S. sinensis species complex on the Japanese mainland. Spiranthes hachijoensis is morphologically similar to S. hongkongensis S.Y. Hu & Barretto and S. nivea T.P. Lin & W.M. Lin, sharing a degenerated rostellum, pollinia without a viscidium, and distinctly trilobed stigma. However, the taxon can be morphologically distinguished from S. hongkongensis by its glabrous rachis, ovaries, and sepals, and from S. nivea by its papillate labellum disc, larger papillate basal labellum callosities, and glabrous rachis, ovaries, and sepals. The autogamy and flowering phenology (i.e., earlier flowering) of S. hachijoensis are most likely responsible for premating isolation from the sympatric S. australis. A MIG-seq-based high-throughput molecular analysis indicated that the genetic difference between S. hachijoensis and its putative sister species S. sinensis is comparable to, or even greater than, the genetic difference between pairs of other species within the S. sinensis species complex. Our multifaceted approach strongly supports the recognition of S. hachijoensis as a morphologically, phenologically, phylogenetically, and ecologically distinct species.


Asunto(s)
Orchidaceae , Filogenia , Orchidaceae/anatomía & histología , Japón , Reproducción
2.
J Plant Res ; 136(1): 3-18, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36445504

RESUMEN

Due to their reduced morphology, non-photosynthetic plants have been one of the most challenging groups to delimit to species level. The mycoheterotrophic genus Monotropastrum, with the monotypic species M. humile, has been a particularly taxonomically challenging group, owing to its highly reduced vegetative and root morphology. Using integrative species delimitation, we have focused on Japanese Monotropastrum, with a special focus on an unknown taxon with rosy pink petals and sepals. We investigated its flowering phenology, morphology, molecular identity, and associated fungi. Detailed morphological investigation has indicated that it can be distinguished from M. humile by its rosy pink tepals and sepals that are generally more numerous, elliptic, and constantly appressed to the petals throughout its flowering period, and by its obscure root balls that are unified with the surrounding soil, with root tips that hardly protrude. Based on genome-wide single-nucleotide polymorphisms, molecular data has provided clear genetic differentiation between this unknown taxon and M. humile. Monotropastrum humile and this taxon are associated with different Russula lineages, even when they are sympatric. Based on this multifaceted evidence, we describe this unknown taxon as the new species M. kirishimense. Assortative mating resulting from phenological differences has likely contributed to the persistent sympatry between these two species, with distinct mycorrhizal specificity.


Asunto(s)
Ericaceae , Micorrizas , Japón , Filogenia , Micorrizas/genética
3.
PhytoKeys ; 204: 23-34, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36760617

RESUMEN

Hymenophyllumchamaecyparicola T.C.Hsu & Z.X.Chang, a new filmy fern species (Hymenophyllaceae) has been described from Taiwan and illustrated based on morphological and phylogenetic evidence. Although the new species resembles members in the subgenus Mecodium, namely H.wrightii, our plastid phylogeny has revealed that it is genetically distant from H.wrightii and forms a clade nested within subg. Hymenophyllum. The most notable characteristic to differentiate H.chamaecyparicola from related species is the presence of minute spathulate hairs on the surface of the rachis and veins. Hymenophyllumchamaecyparicola is currently only known from a small area in northern Taiwan, and endemic to that country.

4.
Mol Phylogenet Evol ; 143: 106689, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31751610

RESUMEN

The Cirrhopetalum alliance is a loosely circumscribed species-rich group within the mega-diverse genus Bulbophyllum (Orchidaceae). The monophyletic status of the alliance has been challenged by previous studies, although established sectional classifications have yet to be tested in a phylogenetic context. We used maximum likelihood and Bayesian analyses of DNA sequence data (cpDNA: matK and psbA-trnH; nrDNA: ITS and Xdh; 3509 aligned characters; 117 taxa), including all sections putatively associated with the Cirrhopetalum alliance, to reconstruct the phylogeny. We mapped 11 selected categorical floral characters onto the phylogeny to identify synapomorphies and assess potential evolutionary transitions across major clades. Our results unequivocally support the recognition of an amended Cirrhopetalum alliance as a well-supported monophyletic group characterized by clear synapomorphies, following the inclusion of sect. Desmosanthes and the exclusion of five putative Cirrhopetalum-allied sections. Most sections within the Cirrhopetalum alliance are demonstrated to be polyphyletic or paraphyletic, necessitating a new sectional classification. The inclusion of sect. Desmosanthes revolutionizes our understanding of the alliance, with significant evolutionary transitions in floral characters detected. We further investigated six continuously variable characters of the sepals and labellum, and detect phylogenetic conservatism in labellum width and the evolutionary lability of lateral sepal length, which can partly be explained by the different functional roles they play in pollination and pollinator trapping.


Asunto(s)
Evolución Molecular , Orchidaceae/clasificación , Teorema de Bayes , ADN de Plantas/química , ADN de Plantas/genética , Flores/anatomía & histología , Flores/clasificación , Flores/genética , Orchidaceae/anatomía & histología , Orchidaceae/genética , Filogenia , Polinización , Análisis de Secuencia de ADN
5.
BMC Plant Biol ; 17(1): 222, 2017 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-29178835

RESUMEN

BACKGROUND: Subtribe Orchidinae (Orchidaceae, Orchidoideae) are a nearly cosmopolitan taxon of terrestrial orchids, comprising about 1800 species in 47 to 60 genera. Although much progress has been made in recent years of phylogenetics of Orchidinae, considerable problems remain to be addressed. Based on molecular phylogenetics, we attempt to illustrate the phylogenetic relationships and discuss generic delimitation within Orchidinae. Seven DNA markers (five plastid and two nuclear), a broad sampling of Orchidinae (400 species in 52 genera) and three methods of phylogenetic analysis (maximum likelihood, maximum parsimony and Bayesian inference) were used. RESULTS: Orchidinae s.l. are monophyletic. Satyrium is sister to the rest of Orchidinae s.l. Brachycorythis and Schizochilus are successive sister to Asian-European Orchidinae s.s. Sirindhornia and Shizhenia are successive sister to clade formed by Tsaiorchis-Hemipilia-Ponerorchis alliance. Stenoglottis is sister to the Habenaria-Herminium-Peristylus alliance. Habenaria, currently the largest genus in Orchidinae, is polyphyletic and split into two distant clades: one Asian-Australian and the other African-American-Asian. Diplomeris is sister to Herminium s.l. plus Asian-Australian Habenaria. CONCLUSIONS: We propose to recognize five genera in the Ponerorchis alliance: Hemipilia, Ponerorchis s.l., Sirindhornia, Shizhenia and Tsaiorchis. Splitting Habenaria into two genera based on morphological characters and geographical distribution may be the least disruptive approach, and it is reasonable to keep Satyrium in Orchidinae.


Asunto(s)
Orchidaceae/clasificación , ADN de Plantas , Marcadores Genéticos , Orchidaceae/genética , Filogenia
6.
PLoS One ; 11(2): e0150366, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26927946

RESUMEN

A molecular phylogeny of Asiatic species of Goodyera (Orchidaceae, Cranichideae, Goodyerinae) based on the nuclear ribosomal internal transcribed spacer (ITS) region and two chloroplast loci (matK and trnL-F) was presented. Thirty-five species represented by 132 samples of Goodyera were analyzed, along with other 27 genera/48 species, using Pterostylis longifolia and Chloraea gaudichaudii as outgroups. Bayesian inference, maximum parsimony and maximum likelihood methods were used to reveal the intrageneric relationships of Goodyera and its intergeneric relationships to related genera. The results indicate that: 1) Goodyera is not monophyletic; 2) Goodyera could be divided into four sections, viz., Goodyera, Otosepalum, Reticulum and a new section; 3) sect. Reticulum can be further divided into two subsections, viz., Reticulum and Foliosum, whereas sect. Goodyera can in turn be divided into subsections Goodyera and a new subsection.


Asunto(s)
Núcleo Celular/genética , Cloroplastos/genética , ADN de Plantas/genética , Orchidaceae/citología , Orchidaceae/genética , Filogenia , Análisis de Secuencia de ADN
7.
PLoS One ; 9(10): e109797, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25295587

RESUMEN

A new species Ixeridium calcicola (Compositae) endemic to middle altitude (ca 1,000-2,000 m asl) limestone mountains of eastcentral Taiwan is described based on morphological and chromosome cytological observations and molecular phylogenetic analyses. Ixeridium calcicola resembles Ixeridium transnokoense, endemic to upper montane and alpine ranges (2,600-3,500 m asl) of Taiwan, in the dwarf habit, but differs in the oblong to lanceolate leaf blades (vs. linear to linear-lanceolate), the presence of mucronulate teeth on the leaf margin and petiole (vs. smooth to very sparse), the dark purple lower leaf surface (vs. greenish), the capitulum with 10 to 12 florets (vs. 5 to 7) and 8 to 10 inner phyllaries (vs. 5, rarely to 7). The basic chromosome number in Ixeridium was known as X = 7. However, the new species has a basic chromosome number of X = 8, as recorded also in the closely related Ixeris. Molecular phylogenetic analyses with the expanded sampling of Ixeridium and Ixeris including both type species supported the monophyly of each of the genera and the placement of the new species in Ixeridium. The result of the phylogenetic analyses and detailed observation of the chromosome morphology revealed that X = 8 in Ixeridium calcicola is derived from centric fission in an ancestral karyomorphotype with X = 7 in Ixeridium. Ixeridium calcicola and Ixeridium transnokoense formed a Taiwan endemic lineage and their estimated divergence time was in the middle Pleistocene. Their common ancestral lineage may have experienced altitudinal distribution shifts in response to glacial-interglacial temperature fluctuation, and a lineage which had not retreated to alpine ranges in an interglacial period likely survived in a limestone refugium, where ordinary plant species did not grow, leading to allopatric speciation.


Asunto(s)
Asteraceae/clasificación , Asteraceae/genética , Carbonato de Calcio , Cromosomas de las Plantas/genética , Filogenia , Altitud , Asteraceae/citología , Asteraceae/efectos de los fármacos , Carbonato de Calcio/farmacología , Cromosomas de las Plantas/efectos de los fármacos , ADN Intergénico/genética , Evolución Molecular , Datos de Secuencia Molecular , Taiwán
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...