Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 940
Filtrar
1.
Int J Bipolar Disord ; 12(1): 20, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865039

RESUMEN

BACKGROUND: Lithium (Li) remains the treatment of choice for bipolar disorders (BP). Its mood-stabilizing effects help reduce the long-term burden of mania, depression and suicide risk in patients with BP. It also has been shown to have beneficial effects on disease-associated conditions, including sleep and cardiovascular disorders. However, the individual responses to Li treatment vary within and between diagnostic subtypes of BP (e.g. BP-I and BP-II) according to the clinical presentation. Moreover, long-term Li treatment has been linked to adverse side-effects that are a cause of concern and non-adherence, including the risk of developing chronic medical conditions such as thyroid and renal disease. In recent years, studies by the Consortium on Lithium Genetics (ConLiGen) have uncovered a number of genetic factors that contribute to the variability in Li treatment response in patients with BP. Here, we leveraged the ConLiGen cohort (N = 2064) to investigate the genetic basis of Li effects in BP. For this, we studied how Li response and linked genes associate with the psychiatric symptoms and polygenic load for medical comorbidities, placing particular emphasis on identifying differences between BP-I and BP-II. RESULTS: We found that clinical response to Li treatment, measured with the Alda scale, was associated with a diminished burden of mania, depression, substance and alcohol abuse, psychosis and suicidal ideation in patients with BP-I and, in patients with BP-II, of depression only. Our genetic analyses showed that a stronger clinical response to Li was modestly related to lower polygenic load for diabetes and hypertension in BP-I but not BP-II. Moreover, our results suggested that a number of genes that have been previously linked to Li response variability in BP differentially relate to the psychiatric symptomatology, particularly to the numbers of manic and depressive episodes, and to the polygenic load for comorbid conditions, including diabetes, hypertension and hypothyroidism. CONCLUSIONS: Taken together, our findings suggest that the effects of Li on symptomatology and comorbidity in BP are partially modulated by common genetic factors, with differential effects between BP-I and BP-II.

2.
Chronobiol Int ; : 1-13, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860554

RESUMEN

Breakfast skipping and late-evening snack are prevalent in young adults. This randomized controlled intervention aimed to evaluate the influence of meal habit recommendations on young adults' body composition and blood pressure. Nonpregnant adults (≥20 y old) who were eligible for bioelectrical impedance analysis examination (neither pacemaker installed nor medications that would affect body composition, like diuretics or corticosteroids) were enrolled after they provided informed consent (n = 125). Subjects were randomized into three groups, every group receiving one of the following recommendations: (a) daily breakfast consumption (within 2 h after waking up), (b) avoidance of late-evening snacks (after 21:00h or within 4 h before sleep, with the exception of water), and (c) both recommendations. Body composition and blood pressure were measured before randomization at baseline and at the follow-up 1 y later. Intent-to-treat analysis showed that the recommendation of daily breakfast may contribute to a lower increment of diastolic blood pressure by 3.23 mmHg (95% CI: 0.17-6.28). Receiving the breakfast recommendation was associated with more reduction of total body fat percent by 2.99% (95% CI: 0.23-5.74) and percent trunk fat by 3.63% (95% CI: 0.40-6.86) in inactive youths. Recommendation of avoiding late-evening snack did not significantly affect the outcome measures (ClinicalTrials.gov Identifier: NCT03828812).

4.
J Xray Sci Technol ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38728198

RESUMEN

BACKGROUND: Accurate volumetric segmentation of primary central nervous system lymphoma (PCNSL) is essential for assessing and monitoring the tumor before radiotherapy and the treatment planning. The tedious manual segmentation leads to interindividual and intraindividual differences, while existing automatic segmentation methods cause under-segmentation of PCNSL due to the complex and multifaceted nature of the tumor. OBJECTIVE: To address the challenges of small size, diffused distribution, poor inter-layer continuity on the same axis, and tendency for over-segmentation in brain MRI PCNSL segmentation, we propose an improved attention module based on nnUNet for automated segmentation. METHODS: We collected 114 T1 MRI images of patients in the Huashan Hospital, Shanghai. Then randomly split the total of 114 cases into 5 distinct training and test sets for a 5-fold cross-validation. To efficiently and accurately delineate the PCNSL, we proposed an improved attention module based on nnU-Net with 3D convolutions, batch normalization, and residual attention (res-attention) to learn the tumor region information. Additionally, multi-scale dilated convolution kernels with different dilation rates were integrated to broaden the receptive field. We further used attentional feature fusion with 3D convolutions (AFF3D) to fuse the feature maps generated by multi-scale dilated convolution kernels to reduce under-segmentation. RESULTS: Compared to existing methods, our attention module improves the ability to distinguish diffuse and edge enhanced types of tumors; and the broadened receptive field captures tumor features of various scales and shapes more effectively, achieving a 0.9349 Dice Similarity Coefficient (DSC). CONCLUSIONS: Quantitative results demonstrate the effectiveness of the proposed method in segmenting the PCNSL. To our knowledge, this is the first study to introduce attention modules into deep learning for segmenting PCNSL based on brain magnetic resonance imaging (MRI), promoting the localization of PCNSL before radiotherapy.

5.
Hepatol Commun ; 8(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38696369

RESUMEN

BACKGROUND: Human genetic studies have identified several mitochondrial amidoxime-reducing component 1 (MTARC1) variants as protective against metabolic dysfunction-associated steatotic liver disease. The MTARC1 variants are associated with decreased plasma lipids and liver enzymes and reduced liver-related mortality. However, the role of mARC1 in fatty liver disease is still unclear. METHODS: Given that mARC1 is mainly expressed in hepatocytes, we developed an N-acetylgalactosamine-conjugated mouse Mtarc1 siRNA, applying it in multiple in vivo models to investigate the role of mARC1 using multiomic techniques. RESULTS: In ob/ob mice, knockdown of Mtarc1 in mouse hepatocytes resulted in decreased serum liver enzymes, LDL-cholesterol, and liver triglycerides. Reduction of mARC1 also reduced liver weight, improved lipid profiles, and attenuated liver pathological changes in 2 diet-induced metabolic dysfunction-associated steatohepatitis mouse models. A comprehensive analysis of mARC1-deficient liver from a metabolic dysfunction-associated steatohepatitis mouse model by metabolomics, proteomics, and lipidomics showed that Mtarc1 knockdown partially restored metabolites and lipids altered by diet. CONCLUSIONS: Taken together, reducing mARC1 expression in hepatocytes protects against metabolic dysfunction-associated steatohepatitis in multiple murine models, suggesting a potential therapeutic approach for this chronic liver disease.


Asunto(s)
Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Hepatocitos , Animales , Ratones , Hepatocitos/metabolismo , Hígado/metabolismo , Masculino , ARN Interferente Pequeño/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Ratones Endogámicos C57BL
6.
Neuroimage ; : 120653, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38795798

RESUMEN

Perivascular cerebrospinal fluid (pCSF) flow is a key component of the glymphatic system. Arterial pulsation has been proposed as the main driving force of pCSF influx along the superficial and penetrating arteries; however, evidence of this mechanism in humans is limited. We proposed an experimental framework of dynamic diffusion tensor imaging with low b-values and ultra-long echo time (dynDTIlow-b) to capture pCSF flow properties during the cardiac cycle in human brains. Healthy adult volunteers (aged 17-28 years; seven men, one woman) underwent dynDTIlow-b using a clinical 3T scanner (MAGNETOM Prisma, Siemens Healthcare, Erlangen, Germany) with simultaneously recorded cardiac output. The results showed that diffusion tensors reconstructed from pCSF were mainly oriented in the direction of the neighboring arterial flow. When switching from vasoconstriction to vasodilation, the axial and radial diffusivities of the pCSF increased by 5.7% and 4.94%, respectively, suggesting that arterial pulsation alters the pCSF flow both parallel and perpendicular to the arterial wall. DynDTIlow-b signal intensity at b=0 s/mm2 (i.e., T2-weighted, [S(b=0 s/mm2)]) decreased in systole, but this change was ∼7.5% of a cardiac cycle slower than the changes in apparent diffusivity, suggesting that changes in S(b=0 s/mm2) and apparent diffusivity arise from distinct physiological processes and potential biomarkers associated with perivascular space volume and pCSF flow, respectively. Additionally, the mean diffusivities of white matter showed cardiac-cycle dependencies similar to pCSF, although a delay relative to the peak time of S(b=0 s/mm2) was present, suggesting that dynDTIlow-b could potentially reveal the dynamics of magnetic resonance imaging-invisible pCSF surrounding small arteries and arterioles in white matter; this delay may result from pulse wave propagation along penetrating arteries. In conclusion, the vasodilation-induced increases in axial and radial diffusivities of pCSF and mean diffusivities of white matter are consistent with the notion that arterial pulsation can accelerate pCSF flow in human brain. Furthermore, the proposed dynDTIlow-b technique can capture various pCSF dynamics in artery pulsation.

7.
Int J Med Sci ; 21(6): 1117-1128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774761

RESUMEN

In this study, we developed a microfluidic device that is able to monitor cell biology under continuous PM2.5 treatment. The effects of PM2.5 on human alveolar basal epithelial cells, A549 cells, and uncovered several significant findings were investigated. The results showed that PM2.5 exposure did not lead to a notable decrease in cell viability, indicating that PM2.5 did not cause cellular injury or death. However, the study found that PM2.5 exposure increased the invasion and migration abilities of A549 cells, suggesting that PM2.5 might promote cell invasiveness. Results of RNA sequencing revealed 423 genes that displayed significant differential expression in response to PM2.5 exposure, with a particular focus on pathways associated with the generation of reactive oxygen species (ROS) and mitochondrial dysfunction. Real-time detection demonstrated an increase in ROS production in A549 cells after exposure to PM2.5. JC1 assay, which indicated a loss of mitochondrial membrane potential (ΔΨm) in A549 cells exposed to PM2.5. The disruption of mitochondrial membrane potential further supports the detrimental effects of PM2.5 on A549 cells. These findings highlight several adverse effects of PM2.5 on A549 cells, including enhanced invasion and migration capabilities, altered gene expression related to ROS pathways, increased ROS production and disruption of mitochondrial membrane potential. These findings contribute to our understanding of the potential mechanisms through which PM2.5 can impact cellular function and health.


Asunto(s)
Movimiento Celular , Supervivencia Celular , Neoplasias Pulmonares , Potencial de la Membrana Mitocondrial , Material Particulado , Especies Reactivas de Oxígeno , Humanos , Material Particulado/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Células A549 , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Movimiento Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dispositivos Laboratorio en un Chip , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Invasividad Neoplásica/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Microfluídica/métodos
8.
Medicina (Kaunas) ; 60(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38792880

RESUMEN

Background and Objectives: Peripheral arterial stiffness (PAS), assessed by brachial-ankle pulse wave velocity (baPWV), is an independent biomarker of cardiovascular diseases (CVD) in patients on maintenance hemodialysis (HD). Malondialdehyde-modified low-density lipoprotein (MDA-LDL), an oxidative stress marker, has been linked to atherosclerosis and CVD. However, the association between serum MDA-LDL and PAS among HD patients has not been fully elucidated. This study aimed to examine the association of serum MDA-LDL with PAS in HD patients and to identify the optimal cutoff value of serum MDA-LDL for predicting PAS. Materials and Methods: A cross-sectional study was conducted in 100 HD patients. Serum MDA-LDL was quantified using an enzyme-linked immunosorbent assay (ELISA), and baPWV was measured using a volume plethysmographic device. Patients were divided into the PAS group (baPWV > 18.0 m/s) and the non-PAS group (baPWV ≤ 18.0 m/s). The associations of baPWV and other clinical and biochemical parameters with serum MDA-LDL were assessed by multivariable logistic regression analyses. A receiver operating characteristic (ROC) curve analysis was performed to determine the optimal cutoff value of serum MDA-LDL for predicting PAS. Results: In multivariable logistic regression analysis, higher serum MDA-LDL, older age, and higher serum C-reactive protein [odds ratios (ORs) and 95% confidence intervals: 1.014 (1.004-1.025), 1.044 (1.004-1.085) and 3.697 (1.149-11.893)] were significantly associated with PAS. In the ROC curve analysis, the optimal cutoff value of MDA-LDL for predicting PAS was 80.91 mg/dL, with a sensitivity of 79.25% and a specificity of 59.57%. Conclusions: Greater serum MDA-LDL levels, particularly ≥80.91 mg/dL, were independently associated with PAS in HD patients. The findings suggest that oxidative stress plays a crucial role in the pathogenesis of PAS, and targeting MDA-LDL may be a potential therapeutic strategy for reducing cardiovascular risk in HD patients.


Asunto(s)
Biomarcadores , Lipoproteínas LDL , Malondialdehído , Diálisis Renal , Rigidez Vascular , Humanos , Masculino , Femenino , Diálisis Renal/efectos adversos , Diálisis Renal/métodos , Rigidez Vascular/fisiología , Persona de Mediana Edad , Estudios Transversales , Malondialdehído/sangre , Biomarcadores/sangre , Lipoproteínas LDL/sangre , Anciano , Análisis de la Onda del Pulso/métodos , Índice Tobillo Braquial/métodos , Curva ROC , Factores de Riesgo , Modelos Logísticos , Adulto , Estrés Oxidativo/fisiología
9.
J Bone Miner Metab ; 42(3): 335-343, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38801451

RESUMEN

INTRODUCTION: Patients with multiple sclerosis (MS) commonly present musculoskeletal disorders characterized by lower bone mineral density (BMD) and muscle weakness. However, the underlying etiology remains unclear. Our objective is to identify shared pleiotropic genetic effects and estimate the causal relationship between MS and musculoskeletal disorders. MATERIALS AND METHODS: We conducted linkage disequilibrium score regression (LDSR), colocalization, and Mendelian randomization (MR) analyses using summary statistics from recent large-scale genome-wide association studies (GWAS), encompassing MS, falls, fractures, and frailty. Additional MR analyses explored the causal relationship with musculoskeletal risk factors, such as BMD, lean mass, grip strength, and vitamin D. RESULTS: We observed a moderate genetic correlation between MS and falls (RG = 0.10, P-value = 0.01) but not between MS with fracture or frailty in the LDSR analyses. MR revealed MS had no causal association with fracture and frailty but a moderate association with falls (OR: 1.004, FDR q-value = 0.018). We further performed colocalization analyses using nine SNPs that exhibited significant associations with both MS and falls in MR. Two SNPs (rs7731626 on ANKRD55 and rs701006 on OS9 gene) showed higher posterior probability of colocalization (PP.H4 = 0.927), suggesting potential pleiotropic effects between MS and falls. The nine genes are associated with central nervous system development and inflammation signaling pathways. CONCLUSION: We found potential pleiotropic genetic effects between MS and falls. However, our analysis did not reveal a causal relationship between MS and increased risks of falls, fractures, or frailty. This suggests that the musculoskeletal disorders frequently reported in MS patients in clinical studies are more likely attributed to secondary factors associated with disease progression and treatment, rather than being directly caused by MS itself.


Asunto(s)
Accidentes por Caídas , Fracturas Óseas , Fragilidad , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Esclerosis Múltiple , Polimorfismo de Nucleótido Simple , Humanos , Esclerosis Múltiple/genética , Fragilidad/genética , Fracturas Óseas/genética , Fracturas Óseas/epidemiología , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Densidad Ósea/genética , Desequilibrio de Ligamiento/genética , Femenino
10.
Abdom Radiol (NY) ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662208

RESUMEN

PURPOSE: The purpose of our study is to investigate image quality, efficiency, and diagnostic performance of a deep learning-accelerated single-shot breath-hold (DLSB) against BLADE for T2-weighted MR imaging (T2WI) for gastric cancer (GC). METHODS: 112 patients with GCs undergoing gastric MRI were prospectively enrolled between Aug 2022 and Dec 2022. Axial DLSB-T2WI and BLADE-T2WI of stomach were scanned with same spatial resolution. Three radiologists independently evaluated the image qualities using a 5-scale Likert scales (IQS) in terms of lesion delineation, gastric wall boundary conspicuity, and overall image quality. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated in measurable lesions. T staging was conducted based on the results of both sequences for GC patients with gastrectomy. Pairwise comparisons between DLSB-T2WI and BLADE-T2WI were performed using the Wilcoxon signed-rank test, paired t-test, and chi-squared test. Kendall's W, Fleiss' Kappa, and intraclass correlation coefficient values were used to determine inter-reader reliability. RESULTS: Against BLADE, DLSB reduced total acquisition time of T2WI from 495 min (mean 4:42 per patient) to 33.6 min (18 s per patient), with better overall image quality that produced 9.43-fold, 8.00-fold, and 18.31-fold IQS upgrading against BALDE, respectively, in three readers. In 69 measurable lesions, DLSB-T2WI had higher mean SNR and higher CNR than BLADE-T2WI. Among 71 patients with gastrectomy, DLSB-T2WI resulted in comparable accuracy to BLADE-T2WI in staging GCs (P > 0.05). CONCLUSIONS: DLSB-T2WI demonstrated shorter acquisition time, better image quality, and comparable staging accuracy, which could be an alternative to BLADE-T2WI for gastric cancer imaging.

11.
BMC Microbiol ; 24(1): 139, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658841

RESUMEN

BACKGROUND: Gastric cancer is one of the global health concerns. A series of studies on the stomach have confirmed the role of the microbiome in shaping gastrointestinal diseases. Delineation of microbiome signatures to distinguish chronic gastritis from gastric cancer will provide a non-invasive preventative and treatment strategy. In this study, we performed whole metagenome shotgun sequencing of fecal samples to enhance the detection of rare bacterial species and increase genome sequence coverage. Additionally, we employed multiple bioinformatics approaches to investigate the potential targets of the microbiome as an indicator of differentiating gastric cancer from chronic gastritis. RESULTS: A total of 65 patients were enrolled, comprising 33 individuals with chronic gastritis and 32 with gastric cancer. Within each group, the chronic gastritis group was sub-grouped into intestinal metaplasia (n = 15) and non-intestinal metaplasia (n = 18); the gastric cancer group, early stage (stages 1 and 2, n = 13) and late stage (stages 3 and 4, n = 19) cancer. No significant differences in alpha and beta diversities were detected among the patient groups. However, in a two-group univariate comparison, higher Fusobacteria abundance was identified in phylum; Fusobacteria presented higher abundance in gastric cancer (LDA scored 4.27, q = 0.041 in LEfSe). Age and sex-adjusted MaAsLin and Random Forest variable of importance (VIMP) analysis in species provided meaningful features; Bacteria_caccae was the most contributing species toward gastric cancer and late-stage cancer (beta:2.43, se:0.891, p:0.008, VIMP score:2.543). In contrast, Bifidobacterium_longum significantly contributed to chronic gastritis (beta:-1.8, se:0.699, p:0.009, VIMP score:1.988). Age, sex, and BMI-adjusted MasAsLin on metabolic pathway analysis showed that GLCMANNANAUT-PWY degradation was higher in gastric cancer and one of the contributing species was Fusobacterium_varium. CONCLUSION: Microbiomes belonging to the pathogenic phylum Fusobacteria and species Bacteroides_caccae and Streptococcus_anginosus can be significant targets for monitoring the progression of gastric cancer. Whereas Bifidobacterium_longum and Lachnospiraceae_bacterium_5_1_63FAA might be protection biomarkers against gastric cancer.


Asunto(s)
Bacterias , Heces , Gastritis , Metagenoma , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/microbiología , Masculino , Femenino , Persona de Mediana Edad , Gastritis/microbiología , Heces/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Anciano , Microbioma Gastrointestinal/genética , Adulto
12.
Nat Commun ; 15(1): 3534, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670989

RESUMEN

Glutamine synthetase (GS) is vital in maintaining ammonia and glutamate (Glu) homeostasis in living organisms. However, the natural enzyme relies on adenosine triphosphate (ATP) to activate Glu, resulting in impaired GS function during ATP-deficient neurotoxic events. To date, no reports demonstrate using artificial nanostructures to mimic GS function. In this study, we synthesize aggregation-induced emission active polyP-Mn nanosheets (STPE-PMNSs) based on end-labeled polyphosphate (polyP), exhibiting remarkable GS-like activity independent of ATP presence. Further investigation reveals polyP in STPE-PMNSs serves as phosphate source to activate Glu at low ATP levels. This self-feeding mechanism offers a significant advantage in regulating Glu homeostasis at reduced ATP levels in nerve cells during excitotoxic conditions. STPE-PMNSs can effectively promote the conversion of Glu to glutamine (Gln) in excitatory neurotoxic human neuroblastoma cells (SH-SY5Y) and alleviate Glu-induced neurotoxicity. Additionally, the fluorescence signal of nanosheets enables precise monitoring of the subcellular distribution of STPE-PMNSs. More importantly, the intracellular fluorescence signal is enhanced in a conversion-responsive manner, allowing real-time tracking of reaction progression. This study presents a self-sustaining strategy to address GS functional impairment caused by ATP deficiency in nerve cells during neurotoxic events. Furthermore, it offers a fresh perspective on the potential biological applications of polyP-based nanostructures.


Asunto(s)
Adenosina Trifosfato , Glutamato-Amoníaco Ligasa , Ácido Glutámico , Glutamina , Manganeso , Nanoestructuras , Neuronas , Polifosfatos , Glutamato-Amoníaco Ligasa/metabolismo , Humanos , Polifosfatos/química , Polifosfatos/metabolismo , Polifosfatos/farmacología , Nanoestructuras/química , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Ácido Glutámico/metabolismo , Ácido Glutámico/toxicidad , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Glutamina/metabolismo , Manganeso/metabolismo , Manganeso/química , Materiales Biocompatibles/química
13.
J Am Soc Mass Spectrom ; 35(5): 960-971, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616559

RESUMEN

In Asia, some herbal preparations have been found to be adulterated with undeclared synthetic medicines to increase their therapeutic efficiency. Many of these adulterants were found to be toxic when overdosed and have been documented to bring about severe, even life-threatening acute poisoning events. The objective of this study is to develop a rapid and sensitive ambient ionization mass spectrometric platform to characterize the undeclared toxic adulterated ingredients in herbal preparations. Several common adulterants were spiked into different herbal preparations and human sera to simulate the clinical conditions of acute poisoning. They were then sampled with a metallic probe and analyzed by the thermal desorption-electrospray ionization mass spectrometry. The experimental parameters including sensitivity, specificity, accuracy, and turnaround time were prudently optimized in this study. Since tedious and time-consuming pretreatment of the sample is unnecessary, the toxic adulterants could be characterized within 60 s. The results can help emergency physicians to make clinical judgments and prescribe appropriate antidotes or supportive treatment in a time-sensitive manner.


Asunto(s)
Contaminación de Medicamentos , Preparaciones de Plantas , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Humanos , Preparaciones de Plantas/análisis , Preparaciones de Plantas/química , Servicios Médicos de Urgencia/métodos
14.
Environ Sci Pollut Res Int ; 31(20): 29162-29173, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38565820

RESUMEN

Air pollution is deemed a human carcinogen and can be linked to certain types of cancer other than lung cancer. The present study aimed to investigate the pollutant-cancer associations in a population-level cohort. We obtained the annual age-standardized incidence rates of 28 different cancer types between 2015 to 2019 from the Taiwan Cancer Registry. Outdoor concentrations of particulate matter with a diameter of 10 µm or less (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), ground-level ozone (O3), and carbon monoxide (CO) between 2001 to 2010 were retrieved from the Taiwan Air Quality Monitoring Network. Weighted quantile sum (WQS) regression models were used to determine the combined effects of five air pollutants on the relationship to cancer incidence rates after controlling for sex ratio, age, average disposable income per household, overweight/obesity prevalence, current smoking rate, and drinking rate. Trend analyses showed that NO2 and CO concentrations tended to decrease, while SO2 concentrations increased in some counties. WQS regression analyses revealed significantly positive correlations between air pollutants and liver cancer, lung and tracheal cancer, colorectal cancer, thyroid cancer, kidney cancer, and small intestine cancer. Altogether, the results from this ecological study unravel that exposure to ambient air pollution is associated with the incidence of several non-lung cancer types.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Neoplasias , Material Particulado , Taiwán/epidemiología , Humanos , Neoplasias/epidemiología , Neoplasias/inducido químicamente , Contaminantes Atmosféricos/análisis , Incidencia , Material Particulado/análisis , Dióxido de Azufre/análisis , Masculino , Femenino , Exposición a Riesgos Ambientales/estadística & datos numéricos , Dióxido de Nitrógeno/análisis
15.
Foods ; 13(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38611334

RESUMEN

In addition to maintaining good exercise and dietary habits, recent studies have shown that probiotics may have potential benefits for muscle mass and strength. It is worth noting that the effects may vary depending on the specific strains used. To date, no studies have analyzed the effects of Lactiplantibacillus brevis in this context. Here, we combine the L. brevis strain GKEX with resistance training to further understand its effects on muscle mass, thickness, performance, and fat loss. In a six-week intervention for a double-blind randomized trial, 52 healthy subjects were divided into two groups (10 male and 16 female participants in each group): a placebo group (two capsules/day, containing 0 CFU of GKEX per capsule) and a GKEX group (two capsules/day, containing 1 × 1010 CFU of GKEX per capsule). Before the intervention, no differences were observed between the two groups in any of the tests (body composition, muscle thickness, exercise performance, and blood parameters). However, supplementation with GKEX significantly improved muscle mass and thickness, as well as grip strength, muscle strength, and explosive performance, when compared to the associated parameters before the intervention. Additionally, GKEX supplementation promoted a reduction in the body fat percentage (p < 0.05). Through analysis of the change amount, we observed that GKEX supplementation yielded significantly improved benefits when compared to the placebo group (p < 0.05). In summary, our findings support the notion that a six-week resistance exercise training program combined with L. brevis GKEX supplementation has superior additive effects that enhance muscle mass and strength performance, while also reducing body fat percentage. This intervention can promote muscle gain and fat loss.

16.
Bioconjug Chem ; 35(5): 575-581, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38456602

RESUMEN

Living microbial therapies have been proposed as a course of action for a variety of diseases. However, problematic interactions between the host immune system and the microbial organism present significant clinical concerns. Previously, we developed a genetically encoded superhydrophilic zwitterionic peptide, termed EKP, to mimic low-immunogenic zwitterionic materials, which have been used for the chemical modification of biologics such as protein and nucleic acid drugs to increase their in vivo circulation time and reduce their immunogenicity. Herein, we demonstrate the protective effects of the EKP polypeptide genetically cloaking the surface of Saccharomyces cerevisiae as a model microbe in both in vitro and in vivo systems. First, we show that EKP peptide cloaking suppresses the interactions between yeast cells and their specific antibodies, thereby illustrating its cloaking behavior. Then, we examine the in vitro interactions between EKP peptide surface cloaked yeast cells and murine macrophage cells, which exhibit phagocytotic behavior in the presence of foreign microbes. Our results indicate that EKP cloaking suppresses macrophage interactions and thus reduces phagocytosis. Furthermore, EKP cloaked yeast cells demonstrate a prolonged circulation time in mice in vivo.


Asunto(s)
Péptidos , Saccharomyces cerevisiae , Animales , Ratones , Péptidos/química , Péptidos/farmacología , Fagocitosis/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología
17.
Magn Reson Med ; 92(2): 782-791, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38523598

RESUMEN

PURPOSE: Non-invasive measurement of cerebral venous oxygenation (Yv) is of critical importance in brain diseases. The present work proposed a fast method to quantify regional Yv map for both large and small veins. METHODS: A new sequence was developed, referred to as TRU-VERA (T2 relaxation under velocity encoding and rapid acquisition, which isolates blood spins from static tissue with velocity-encoding preparation, modulates the T2 weighting of venous signal with T2-preparation and utilizes a bSSFP readout to achieve fast acquisition with high resolution. The sequence was first optimized to achieve best sensitivity for both large and small veins, and then validated with TRUST (T2 relaxation under spin tagging), TRUPC (T2 relaxation under phase contrast), and accelerated TRUPC MRI. Regional difference of Yv was evaluated, and test-retest reproducibility was examined. RESULTS: Optimal Venc was determined to be 3 cm/s, while recovery time and balanced SSFP flip angle within reasonable range had minimal effect on SNR efficiency. Venous T2 measured with TRU-VERA was highly correlated with T2 from TRUST (R2 = 0.90), and a conversion equation was established for further calibration to Yv. TRU-VERA sequences showed consistent Yv estimation with TRUPC (R2 = 0.64) and accelerated TRUPC (R2 = 0.79). Coefficient of variation was 0.84% for large veins and 2.49% for small veins, suggesting an excellent test-retest reproducibility. CONCLUSION: The proposed TRU-VERA sequence is a promising method for vessel-specific oxygenation assessment.


Asunto(s)
Venas Cerebrales , Circulación Cerebrovascular , Oxígeno , Humanos , Venas Cerebrales/diagnóstico por imagen , Masculino , Reproducibilidad de los Resultados , Adulto , Femenino , Circulación Cerebrovascular/fisiología , Oxígeno/sangre , Imagen por Resonancia Magnética/métodos , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Adulto Joven
18.
J Cancer ; 15(8): 2403-2411, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495506

RESUMEN

Background: Breast cancer is the most prevalent cancer among women worldwide. The potential involvement of Epstein-Barr virus (EBV) in breast cancer pathogenesis has been a subject of debate, but its correlation with clinical outcomes remains uncertain. Methods: In this study, we collected 276 pathologically confirmed breast cancer tissue samples from the tissue bank of MacKay Memorial Hospital and the National Health Research Institutes in Taiwan. DNA was extracted from frozen tissue using The QIAamp DNA Mini Kit. The Taqman quantitative PCR method was employed to assess the EBV copy number per cell in these samples, using NAMALWA cells as a reference. We performed statistical analyses, including 2 × 2 contingency tables, Cox regression analysis, and Kaplan-Meier survival curves, to explore the association between clinicopathologic factors and survival outcomes in breast cancer patients. We analyzed both relapse survival, which reflects the period patients remain free from cancer recurrence post-treatment, and overall survival, which encompasses all-cause mortality. Results: Our results revealed a significant association between EBV status and relapse survival (hazard ratio: 2.75, 95% CI: 1.30, 5.86; p = 0.008) in breast cancer patients. However, no significant association was found in overall survival outcomes. Additionally, we observed significant associations between ER status and tumor histologic grade with both overall and relapse survival. Patients with EBV-positive tumors exhibited higher recurrence rates compared to those with EBV-negative tumors. Furthermore, we noted significant correlations between EBV status and HER-2 (p = 0.0005) and histological grade (p = 0.02) in our cohort of breast cancer patients. Conclusions: The presence of EBV in breast cancer tumors appears to exert an impact on patient outcomes, particularly concerning recurrence rates. Our findings highlight the significance of considering EBV status as a potential prognostic marker in breast cancer patients. Nonetheless, further research is essential to elucidate the underlying molecular mechanisms and develop novel therapeutic approaches.

19.
Life (Basel) ; 14(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38541736

RESUMEN

Type-2 diabetes mellitus (T2DM)-induced sarcopenia is intertwined with diminished insulin sensitivity and extracellular matrix (ECM) remodeling in skeletal muscle and other organs. Physical activities such as aerobic exercise play a crucial role in regulating blood glucose levels, insulin sensitivity, metabolic pathways, oxidative stress, fibrosis, ECM remodeling, and muscle regeneration by modulating differentially expressed protein (DEP) levels. The objectives of our research were to investigate the effect of six weeks of aerobic exercise on the gastrocnemius and soleus muscle of db/db mice's DEP levels compared to those of sedentary db/db mice. A total of eight db/db mice were divided into two groups (n = 4 per group), namely sedentary mice (SED) and exercise-trained mice (ET), of which the latter were subjected to six weeks of a moderate-intensity aerobic exercise intervention for five days per week. After the exercise intervention, biochemical tests, including analyses of blood glucose and HbA1c levels, were performed. Histological analysis using H & E staining on tissue was performed to compare morphological characters. Gastrocnemius and soleus muscles were dissected and processed for proteomic analysis. Data were provided and analyzed based on the DEPs using the label-free quantification (LFQ) algorithm. Functional enrichment analysis and Ingenuity Pathway Analysis (IPA) were employed as bioinformatics tools to elucidate the molecular mechanisms involved in the DEPs and disease progression. Significantly reduced blood glucose and HbA1c levels and an increased cross-sectional area (CSA) of gastrocnemius muscle fibers were seen in the ET group after the exercise interventions due to upregulations of metabolic pathways. Using proteomics data analysis, we found a significant decrease in COL1A1, COL4A2, ENG, and LAMA4 protein levels in the ET gastrocnemius, showing a significant improvement in fibrosis recovery, ECM remodeling, and muscle regeneration via the downregulation of the TGF-ß signaling pathway. Upregulated metabolic pathways due to ET-regulated DEPs in the gastrocnemius indicated increased glucose metabolism, lipid metabolism, muscle regeneration, and insulin sensitivity, which play a crucial role in muscle regeneration and maintaining blood glucose and lipid levels. No significant changes were observed in the soleus muscle due to the type of exercise and muscle fiber composition. Our research suggests that engaging in six weeks of aerobic exercise may have a positive impact on the recovery of T2DM-induced sarcopenia, which might be a potential candidate for mitigation, prevention, and therapeutic treatment in the future.

20.
Nat Commun ; 15(1): 2106, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453887

RESUMEN

In all terrestrial vertebrates, the parathyroid glands are critical regulators of calcium homeostasis and the sole source of parathyroid hormone (PTH). Hyperparathyroidism and hypoparathyroidism are clinically important disorders affecting multiple organs. However, our knowledge regarding regulatory mechanisms governing the parathyroids has remained limited. Here, we present the comprehensive maps of the chromatin landscape of the human parathyroid glands, identifying active regulatory elements and chromatin interactions. These data allow us to define regulatory circuits and previously unidentified genes that play crucial roles in parathyroid biology. We experimentally validate candidate parathyroid-specific enhancers and demonstrate their integration with GWAS SNPs for parathyroid-related diseases and traits. For instance, we observe reduced activity of a parathyroid-specific enhancer of the Calcium Sensing Receptor gene, which contains a risk allele associated with higher PTH levels compared to the wildtype allele. Our datasets provide a valuable resource for unraveling the mechanisms governing parathyroid gland regulation in health and disease.


Asunto(s)
Calcio , Glándulas Paratiroides , Animales , Humanos , Calcio/metabolismo , Glándulas Paratiroides/metabolismo , Hormona Paratiroidea/genética , Hormona Paratiroidea/metabolismo , Cromatina/genética , Epigénesis Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...