Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 13(4)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36832173

RESUMEN

BACKGROUND: When cancer has metastasized to bone, doctors must identify the site of the metastases for treatment. In radiation therapy, damage to healthy areas or missing areas requiring treatment should be avoided. Therefore, it is necessary to locate the precise bone metastasis area. The bone scan is a commonly applied diagnostic tool for this purpose. However, its accuracy is limited by the nonspecific character of radiopharmaceutical accumulation. The study evaluated object detection techniques to improve the efficacy of bone metastases detection on bone scans. METHODS: We retrospectively examined the data of 920 patients, aged 23 to 95 years, who underwent bone scans between May 2009 and December 2019. The bone scan images were examined using an object detection algorithm. RESULTS: After reviewing the image reports written by physicians, nursing staff members annotated the bone metastasis sites as ground truths for training. Each set of bone scans contained anterior and posterior images with resolutions of 1024 × 256 pixels. The optimal dice similarity coefficient (DSC) in our study was 0.6640, which differs by 0.04 relative to the optimal DSC of different physicians (0.7040). CONCLUSIONS: Object detection can help physicians to efficiently notice bone metastases, decrease physician workload, and improve patient care.

2.
J Pers Med ; 12(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35055316

RESUMEN

Parkinson's disease (PD), a progressive disease that affects movement, is related to dopaminergic neuron degeneration. Tc-99m Trodat-1 brain (TRODAT) single-photon emission computed tomography (SPECT) aids the functional imaging of dopamine transporters and is used for dopaminergic neuron enumeration. Herein, we employed a convolutional neural network to facilitate PD diagnosis through TRODAT SPECT, which is simpler than models such as VGG16 and ResNet50. We retrospectively collected the data of 3188 patients (age range 20-107 years) who underwent TRODAT SPECT between June 2011 and December 2019. We developed a set of functional imaging multiclassification deep learning algorithms suitable for TRODAT SPECT on the basis of the annotations of medical experts. We then applied our self-proposed model and compared its results with those of four other models, including deep and machine learning models. TRODAT SPECT included three images collected from each patient: one presenting the maximum absorption of the metabolic function of the striatum and two adjacent images. An expert physician determined that our model's accuracy, precision, recall, and F1-score were 0.98, 0.98, 0.98, and 0.98, respectively. Our TRODAT SPECT model provides an objective, more standardized classification correlating to the severity of PD-related diseases, thereby facilitating clinical diagnosis and preventing observer bias.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...