Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1454, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922528

RESUMEN

Facile formation of carbon-heteroatom bonds is a long-standing objective in synthetic organic chemistry. However, direct cross-coupling with readily accessible alkenyl acetates via inert C‒O bond-cleavage for the carbon-heteroatom bond construction remains challenging. Here we report a practical preparation of stereoselective tri- and tetrasubstituted alkenyl silanes and stannanes by performing cobalt-catalyzed C‒O silylation and stannylation of alkenyl acetates using silylzinc pivalate and stannylzinc chloride as the nucleophiles. This protocol features a complete control of chemoselectivity, stereoselectivity, as well as excellent functional group compatibility. The resulting alkenyl silanes and stannanes show high reactivities in arylation and alkenylation by Hiyama and Stille reactions. The synthetic utility is further illustrated by the facile late-stage modifications of natural products and drug-like molecules. Mechanistic studies suggest that the reaction might involve a chelation-assisted oxidative insertion of cobalt species to C‒O bond. We anticipate that our findings should prove instrumental for potential applications of this technology to organic syntheses and drug discoveries in medicinal chemistry.

2.
Chem Commun (Camb) ; 58(16): 2734-2737, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35118486

RESUMEN

A practical nickel- and photoredox-catalyzed Csp3-H monofluoroalkenylation through chelation-assisted Csp2-F bond cleavage of gem-difluoroalkenes for the synthesis of stereodefined tetrasubstituted fluoroalkenes has been developed. Moreover, the gem-difluoroalkenes can also undergo photoredox-catalyzed cascade twofold C-F diaminomethylation.

3.
Org Biomol Chem ; 19(36): 7754-7767, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34549215

RESUMEN

Catalytic cross-couplings through C-O bond-cleavage of unsaturated carboxylates with organometallics have emerged as a powerful method for sustainable syntheses. Over the last decade, remarkable achievements have been made with the development of transition metal-catalyzed cross-couplings with the readily available phenol and enol derivatives as suitable coupling electrophiles beyond unsaturated halides. Therefore, this perspective describes the recent advances in the field of transition metal-catalyzed C-O bond activation of unsaturated carboxylates with organometallics, including B, Mg, Zn, Al, and Si reagents, until May 2021.

4.
Nat Commun ; 12(1): 4366, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34272392

RESUMEN

Installation of fluorine into pharmaceutically relevant molecules plays a vital role in their properties of biology or medicinal chemistry. Direct difunctionalization of alkenes and 1,3-dienes to achieve fluorinated compounds through transition-metal catalysis is challenging, due to the facile ß-H elimination from the Csp3‒[M] intermediate. Here we report a cobalt-catalyzed regioselective difluoroalkylarylation of both activated and unactivated alkenes with solid arylzinc pivalates and difluoroalkyl bromides through a cascade Csp3‒Csp3/Csp3‒Csp2 bond formation under mild reaction conditions. Indeed, a wide range of functional groups on difluoroalkyl bromides, olefins, 1,3-dienes as well as (hetero)arylzinc pivalates are well tolerated by the cobalt-catalyst, thus furnishing three-component coupling products in good yields and with high regio- and diastereoselectivity. Kinetic experiments comparing arylzinc pivalates and conventional arylzinc halides highlight the unique reactivity of these organozinc pivalates. Mechanistic studies strongly support that the reaction involves direct halogen atom abstraction via single electron transfer to difluoroalkyl bromides from the in situ formed cobalt(I) species, thus realizing a Co(I)/Co(II)/Co(III) catalytic cycle.

5.
Angew Chem Int Ed Engl ; 60(28): 15497-15502, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33909317

RESUMEN

A set of rhenium-catalyzed arylation-acyl cyclizations between (hetero)arylmagnesium halides and enol lactones through a cascade C(sp2 )-C(sp2 )/C(sp2 )-C(sp2 ) bond formation under mild reaction conditions has been developed. Indeed, a wide range of functional groups on both organomagnesium halides and enol lactones is well tolerated by the simple rhenium catalysis, thus furnishing polyfunctionalized indenones in one-pot fashion and with complete control of the regioselectivity. Moreover, this approach also provides a straightforward synthetic route to neolignan and (iso)pauciflorol F. Mechanistic studies demonstrated that the reaction involves a sequence of syn-carborhenation and intramolecular nucleophilic addition.

6.
Beilstein J Nanotechnol ; 10: 1157-1165, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31293853

RESUMEN

A mild and simple method was developed to synthesize a highly efficient photocatalyst comprised of Ce-doped ZnO rods and optimal synthesis conditions were determined by testing samples with different Ce/ZnO molar ratios calcined at 500 °C for 3 hours via a one-step pyrolysis method. The photocatalytic activity was assessed by the degradation of a common dye pollutant found in wastewater, rhodamine B (RhB), using a sunlight simulator. The results showed that ZnO doped with 3% Ce exhibits the highest RhB degradation rate. To understand the crystal structure, elemental state, surface morphology and chemical composition, the photocatalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and inductively coupled plasma emission spectroscopy (ICP), respectively. The newly developed, robust, field-only surface integral method was employed to explore the relationship between the remarkable catalytic effect and the catalyst shape and porous microstructure. The computational results showed that the dipole-like field covers the entire surface of the rod-like Ce-doped ZnO photocatalyst and is present over the entire range of wavelengths considered. The optimum degradation conditions were determined by orthogonal tests and range analysis, including the concentration of RhB and catalyst, pH value and temperature. The results indicate that the pH value is the main influential factor in the photocatalytic degradation process and the optimal experimental conditions to achieve the maximum degradation rate of 97.66% in 2 hours are as follows: concentration (RhB) = 10 mg/L, concentration (catalyst) = 0.7 g/L, pH 9.0 and T = 50 °C. These optimum conditions supply a helpful reference for large-scale wastewater degradation containing the common water contaminant RhB.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...