Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(13): 9465-9475, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38507822

RESUMEN

Dry reforming of methane (DRM) is a promising technique for converting greenhouse gases (namely, CH4 and CO2) into syngas. However, traditional thermocatalytic processes require high temperatures and suffer from low selectivity and coke-induced instability. Here, we report high-entropy alloys loaded on SrTiO3 as highly efficient and coke-resistant catalysts for light-driven DRM without a secondary source of heating. This process involves carbon exchange between reactants (i.e., CO2 and CH4) and oxygen exchange between CO2 and the lattice oxygen of supports, during which CO and H2 are gradually produced and released. Such a mechanism deeply suppresses the undesired side reactions such as reverse water-gas shift reaction and methane deep dissociation. Impressively, the optimized CoNiRuRhPd/SrTiO3 catalyst achieves ultrahigh activity (15.6/16.0 mol gmetal-1 h-1 for H2/CO production), long-term stability (∼150 h), and remarkable selectivity (∼0.96). This work opens a new avenue for future energy-efficient industrial applications.

2.
J Am Chem Soc ; 146(1): 970-978, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38155551

RESUMEN

Light-driven hydrogenation of nitro compounds to functionalized amines is of great importance yet a challenge for practical applications, which calls for the development of high-performance, nonprecious photocatalysts and efficient catalytic systems. Herein, we report a high-efficiency Fe3O4@TiO2 photocatalyst via a sol-gel and subsequent pyrolysis strategy, which exhibits desirable photothermal hydrogenation performance of nitro compounds to functionalized amines with the excellent selectivity of >90% exceeding those of the state-of-the-art heterogeneous photocatalysts. Our experimental results and theoretical calculations for the first time reveal that Fe3O4 is the major active phase, and the strong metal-support interaction between Fe3O4 and reducible TiO2 further leads to performance improvement, taking advantage of the enhanced photothermal effect and the improved adsorption for the reactant and hydrazine hydrate. Notably, a variety of halonitrobenzenes and pharmaceutical intermediates can be completely converted to functionalized amines with high selectivities, even in gram-scale reactions. This work provides a new insight into the rational design of nonprecious photo/thermo-catalysts for other catalytic reactions.

4.
Nat Commun ; 14(1): 221, 2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36639386

RESUMEN

Imitating the natural photosynthesis to synthesize hydrocarbon fuels represents a viable strategy for solar-to-chemical energy conversion, where utilizing low-energy photons, especially near-infrared photons, has been the ultimate yet challenging aim to further improving conversion efficiency. Plasmonic metals have proven their ability in absorbing low-energy photons, however, it remains an obstacle in effectively coupling this energy into reactant molecules. Here we report the broadband plasmon-induced CO2 reduction reaction with water, which achieves a CH4 production rate of 0.55 mmol g-1 h-1 with 100% selectivity to hydrocarbon products under 400 mW cm-2 full-spectrum light illumination and an apparent quantum efficiency of 0.38% at 800 nm illumination. We find that the enhanced local electric field plays an irreplaceable role in efficient multiphoton absorption and selective energy transfer for such an excellent light-driven catalytic performance. This work paves the way to the technique for low-energy photon utilization.

5.
Angew Chem Int Ed Engl ; 61(52): e202215540, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36314983

RESUMEN

Photocatalysis is a promising yet challenging approach for the selective oxidation of hydrocarbons to valuable oxygenated chemicals with O2 under mild conditions. In this work, we report an atomically precise material model to address this challenge. The key to our solution is the rational incorporation of Fe species into polyoxotitanium cluster to form a heterometallic Ti4 Fe1 cocrystal. This newly designed cocrystal cluster, which well governs the energy and charge transfer as evidenced by spectroscopic characterizations and theoretical calculations, enables the synergistic process involving C(sp3 )-H bond activation by photogenerated holes and further reactions by singlet oxygen (1 O2 ). Remarkably, the cocrystal Ti4 Fe1 cluster achieves efficient and selective oxidation of hydrocarbons (C5 to C16 ) into aldehydes and ketones with a conversion rate up to 12 860 µmol g-1 h-1 , 5 times higher than that of Fe-doped Ti3 Fe1 cluster. This work provides insights into photocatalyst design at atomic level enabling synergistic catalysis.

6.
JACS Au ; 2(5): 1160-1168, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35647591

RESUMEN

Photocatalysis under mild conditions is an intriguing avenue for organic chemical manufacturing to confront the serious fossil energy crisis. Herein, we report a direct light-driven alkene production through alcohol dehydration, using nonstoichiometric tungsten oxide of W18O49 nanowires with abundant lattice defects as a photocatalyst. A representative ethylene (C2H4) production rate of 275.5 mmol gcat -1 h-1 is achieved from ethanol (C2H5OH) dehydration, together with excellent selectivity up to 99.9%. The universality of our approach is further demonstrated with other alcohol dehydration. Combining ultrafast transient absorption spectroscopy with in situ X-ray photoelectron spectroscopy, we underline that the inter- and intraband transitions synergistically contribute to such excellent activity. In particular, the intraband transition excites the electrons in defect bands into an energetically "hot" state, largely alleviating the charge recombination. As a result, the C-OH bond of chemisorbed C2H5OH molecules can be effectively dissociated to furnish the formation of C=C bonds. Our work offers a fresh insight into sustainable alkene production with renewable energy input under mild conditions.

7.
Angew Chem Int Ed Engl ; 60(29): 16085-16092, 2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-33963658

RESUMEN

To avoid the energy-consuming step of direct N≡N bond cleavage, photocatalytic N2 fixation undergoing the associative pathways has been developed for mild-condition operation. However, it is a fundamental yet challenging task to gain comprehensive understanding on how the associative pathways (i.e., alternating vs. distal) are influenced and altered by the fine structure of catalysts, which eventually holds the key to significantly promote the practical implementation. Herein, we introduce Fe dopants into TiO2 nanofibers to stabilize oxygen vacancies and simultaneously tune their local electronic structure. The combination of in situ characterizations with first-principles simulations reveals that the modulation of local electronic structure by Fe dopants turns the hydrogenation of N2 from associative alternating pathway to associative distal pathway. This work provides fresh hints for rationally controlling the reaction pathways toward efficient photocatalytic nitrogen fixation.

8.
ACS Nano ; 15(5): 8537-8548, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33939408

RESUMEN

Exploring the advanced oxygen evolution reaction (OER) electrocatalysts is highly desirable toward sustainable energy conversion and storage, yet improved efficiency in acidic media is largely hindered by its sluggish reaction kinetics. Herein, we rationally manipulate the electronic states of the strongly electron correlated pyrochlore ruthenate Y2Ru2O7 alternative through partial A-site substitution of Sr2+ for Y3+, efficiently improving its intrinsic OER activity. The optimized Y1.7Sr0.3Ru2O7 candidate observes a highly intrinsic mass activity of 1018 A gRu-1 at an overpotential of 300 mV with excellent durability in 0.5 M H2SO4 electrolyte. Combining synchrotron-radiation X-ray spectroscopic investigations with theoretical simulations, we reveal that the electron correlations in the Ru 4d band are weakened through coordinatively geometric regulation and charge redistribution by the exotic Sr2+ cation, enabling the delocalization of Ru 4d electrons via an insulator-to-metal transition. The induced Ru-O covalency promotion and band alignment rearrangement decreases the charge transfer energy to accelerate interfacial charge transfer kinetics. Meanwhile, the chemical affinity of oxygen intermediates is also rationalized to weaken the metal-oxygen binding strength, thus lowering the energy barrier of the overall reaction. This work offers fresh insights into designing advanced solid-state electrocatalysts and underlines the versatility of electronic structure manipulation in tuning catalytic activity.

9.
J Am Chem Soc ; 141(19): 7807-7814, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31038309

RESUMEN

Nitrogen fixation in a simulated natural environment (i.e., near ambient pressure, room temperature, pure water, and incident light) would provide a desirable approach to future nitrogen conversion. As the N≡N triple bond has a thermodynamically high cleavage energy, nitrogen reduction under such mild conditions typically undergoes associative alternating or distal pathways rather than following a dissociative mechanism. Here, we report that surface plasmon can supply sufficient energy to activate N2 through a dissociative mechanism in the presence of water and incident light, as evidenced by in situ synchrotron radiation-based infrared spectroscopy and near ambient pressure X-ray photoelectron spectroscopy. Theoretical simulation indicates that the electric field enhanced by surface plasmon, together with plasmonic hot electrons and interfacial hybridization, may play a critical role in N≡N dissociation. Specifically, AuRu core-antenna nanostructures with broadened light adsorption cross section and active sites achieve an ammonia production rate of 101.4 µmol g-1 h-1 without any sacrificial agent at room temperature and 2 atm pressure. This work highlights the significance of surface plasmon to activation of inert molecules, serving as a promising platform for developing novel catalytic systems.

10.
Chem Commun (Camb) ; 50(46): 6094-7, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24777281

RESUMEN

Two-dimensional g-C3N4 nanosheets with few-layer thickness, ensuring equivalent charge migrations to various Pd facets, provide an ideal model system for reliably examining the facet selectivity of Pd co-catalysts. It reveals that reduction of CO2 can occur better on Pd{111} facets while H2O prefers to generate H2 on Pd{100}.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...