Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 195(1): 479-501, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38227428

RESUMEN

Flowering is an essential process in fruit trees. Flower number and timing have a substantial impact on the yield and maturity of fruit. Ethylene and gibberellin (GA) play vital roles in flowering, but the mechanism of coordinated regulation of flowering in woody plants by GA and ethylene is still unclear. In this study, a lemon (Citrus limon L. Burm) 1-aminocyclopropane-1-carboxylic acid synthase gene (CiACS4) was overexpressed in Nicotiana tabacum and resulted in late flowering and increased flower number. Further transformation of citrus revealed that ethylene and starch content increased, and soluble sugar content decreased in 35S:CiACS4 lemon. Inhibition of CiACS4 in lemon resulted in effects opposite to that of 35S:CiACS4 in transgenic plants. Overexpression of the CiACS4-interacting protein ETHYLENE RESPONSE FACTOR3 (CiERF3) in N. tabacum resulted in delayed flowering and more flowers. Further experiments revealed that the CiACS4-CiERF3 complex can bind the promoters of FLOWERING LOCUS T (CiFT) and GOLDEN2-LIKE (CiFE) and suppress their expression. Moreover, overexpression of CiFE in N. tabacum led to early flowering and decreased flowers, and ethylene, starch, and soluble sugar contents were opposite to those in 35S:CiACS4 transgenic plants. Interestingly, CiFE also bound the promoter of CiFT. Additionally, GA3 and 1-aminocyclopropanecarboxylic acid (ACC) treatments delayed flowering in adult citrus, and treatment with GA and ethylene inhibitors increased flower number. ACC treatment also inhibited the expression of CiFT and CiFE. This study provides a theoretical basis for the application of ethylene to regulate flower number and mitigate the impacts of extreme weather on citrus yield due to delayed flowering.


Asunto(s)
Citrus , Etilenos , Flores , Regulación de la Expresión Génica de las Plantas , Giberelinas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Giberelinas/metabolismo , Citrus/genética , Citrus/fisiología , Citrus/crecimiento & desarrollo , Flores/genética , Flores/fisiología , Flores/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo , Nicotiana/genética , Nicotiana/fisiología , Nicotiana/crecimiento & desarrollo , Liasas/metabolismo , Liasas/genética
2.
Sci Rep ; 13(1): 19616, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949927

RESUMEN

The vibration controlled transient elastography (VCTE) technique was used to assess the effectiveness of a Biejia Decoction pill in combination with Entecavir in the treatment of hepatitis B liver fibrosis/cirrhosis. We randomly selected 120 patients to receive entecavir and 119 patients to receive both entecavir and Biejia Decoction Pill, which both with hepatitis B liver fibrosis/cirrhosis visited the Second Affiliated Hospital of Nanchang University between January 2019 and February 2022. The observation group got ETV (entecavir) and Biejia Decoction pills, whereas the control group received only standard ETV antiviral medication. Based on the grading of the VCTE detection value (LSM) initially diagnosed for patients with hepatitis B liver fibrosis/cirrhosis, we divided the patients into two subgroups of liver fibrosis and cirrhosis. In addition, patients with liver fibrosis were divided into mild and moderate subgroups according to their VCTE values. Patients were measured for liver hardness after three, six, nine, and twelve months of treatment with VCTE. Biejia Decoction Pill combined with ETV on HBV liver fibrosis/cirrhosis was evaluated by comparing patients' changes in liver hardness and HBV-DNA negative conversion rates before and after treatment in each group at the same baseline. The LSM (liver elasticity value) of the observation group and the control group after treatment was lower than that before treatment, and the difference was statistically significant (P < 0.0001); The LSM of the observation group after treatment was significantly lower than that of the control group, and the difference was also statistically significant (P = 0.0005 < 0.05). In the subgroup of liver fibrosis, the number of patients with moderate and severe liver fibrosis who completely reversed liver fibrosis after treatment in the treatment group was far more than that in the control group, and the difference between the two groups was statistically significant (χ2 = 4.82 P = 0.028 < 0.05) 。 When the treatment course was more than 9 months, the negative conversion rate of patients in the observation group reached 87.4%, which was higher than that in the control group (70.8%), and the difference was statistically significant (P = 0.002 < 0.05); After 12 months of treatment, the negative conversion rate of patients in the observation group was as high as 95%, which was significantly higher than 76.67% in the control group (P < 0.001). The degree of liver fibrosis was significantly improved when Biejia Decoction Pill was combined with ETV in patients with liver fibrosis/cirrhosis due to hepatitis B. The virological response rate to HBV-DNA increased with the prolongation of treatment, and the Biejia Decoction Pill assists with entecavir in antiviral therapy.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Hepatitis B Crónica , Hepatitis B , Humanos , Hepatitis B Crónica/complicaciones , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/diagnóstico , ADN Viral , Vibración , Resultado del Tratamiento , Hepatitis B/complicaciones , Hepatitis B/tratamiento farmacológico , Hepatitis B/inducido químicamente , Cirrosis Hepática/diagnóstico , Antivirales/uso terapéutico , Virus de la Hepatitis B/genética
3.
Hortic Res ; 10(3): uhad018, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36968187

RESUMEN

Analyzing and comparing the effects of labor-saving cultivation modes on photosynthesis, as well as studying their vertical canopy architecture, can improve the tree structure of high-quality and high-yield citrus and selection of labor-saving cultivation modes. The photosynthesis of 1080 leaves of two labor-saving cultivation modes (wide-row and narrow-plant mode and fenced mode) comparing with the traditional mode were measured, and nitrogen content of all leaves and photosynthetic nitrogen use efficiency (PNUE) were determined. Unmanned aerial vehicle (UAV)-based light detection and ranging (LiDAR) data were used to assess the vertical architecture of three citrus cultivation modes. Results showed that for the wide-row and narrow-plant and traditional modes leaf photosynthetic CO2 assimilation rate, stomatal conductance, and transpiration rate of the upper layer were significantly higher than those of the middle layer, and values of the middle layer were markedly higher than those of the lower layer. In the fenced mode, a significant difference in photosynthetic factors between the upper and middle layers was not observed. A vertical canopy distribution had a more significant effect on PNUE in the traditional mode. Leaves in the fenced mode had distinct photosynthetic advantages and higher PNUE. UAV-based LiDAR data effectively revealed the differences in the vertical canopy architecture of citrus trees by enabling calculating the density and height percentile of the LiDAR point cloud. The point cloud densities of three cultivation modes were significantly different for all LiDAR density slices, especially at higher canopy heights. The labor-saving modes, particularly the fenced mode, had significantly higher height percentile data.

4.
J Integr Plant Biol ; 65(3): 674-691, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36250511

RESUMEN

Drought and low temperature are two key environmental factors that induce adult citrus flowering. However, the underlying regulation mechanism is poorly understood. The bZIP transcription factor FD is a key component of the florigen activation complex (FAC) which is composed of FLOWERING LOCUS T (FT), FD, and 14-3-3 proteins. In this study, isolation and characterization of CiFD in citrus found that there was alternative splicing (AS) of CiFD, forming two different proteins (CiFDα and CiFDß). Further investigation found that their expression patterns were similar in different tissues of citrus, but the subcellular localization and transcriptional activity were different. Overexpression of the CiFD DNA sequence (CiFD-DNA), CiFDα, or CiFDß in tobacco and citrus showed early flowering, and CiFD-DNA transgenic plants were the earliest, followed by CiFDß and CiFDα. Interestingly, CiFDα and CiFDß were induced by low temperature and drought, respectively. Further analysis showed that CiFDα can form a FAC complex with CiFT, Ci14-3-3, and then bind to the citrus APETALA1 (CiAP1) promoter and promote its expression. However, CiFDß can directly bind to the CiAP1 promoter independently of CiFT and Ci14-3-3. These results showed that CiFDß can form a more direct and simplified pathway that is independent of the FAC complex to regulate drought-induced flowering through AS. In addition, a bHLH transcription factor (CibHLH96) binds to CiFD promoter and promotes the expression of CiFD under drought condition. Transgenic analysis found that CibHLH96 can promote flowering in transgenic tobacco. These results suggest that CiFD is involved in drought- and low-temperature-induced citrus flowering through different regulatory patterns.


Asunto(s)
Citrus , Citrus/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Plantas/metabolismo , Empalme Alternativo , Flores/fisiología , Sequías , Temperatura , Florigena/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo
5.
Plant Cell Environ ; 45(12): 3505-3522, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36117312

RESUMEN

Flower induction in adult citrus is mainly regulated by drought and low temperatures. However, the mechanism of FLOWERING LOCUS T regulation of citrus flowering (CiFT) under two flower-inductive stimuli remains largely unclear. In this study, a citrus transcription factor, nuclear factor YA (CiNF-YA1), was found to specifically bind to the CiFT promoter by forming a complex with CiNF-YB2 and CiNF-YC2 to activate CiFT expression. CiNF-YA1 was induced in juvenile citrus by low temperature and drought treatments. Overexpression of CiNF-YA1 increased drought susceptibility in transgenic citrus, whereas suppression of CiNF-YA1 enhanced drought tolerance in silenced citrus plants. Furthermore, a GOLDEN2 - LIKE protein (CiFE) that interacts with CiFT protein was also isolated. Further experimental evidence showed that CiFE binds to the citrus LEAFY (CiLFY) promoter and activates its expression. In addition, the expressions of CiNF-YA1 and CiFE showed a seasonal increase during the floral induction period and were induced by artificial drought and low-temperature treatments at which floral induction occurred. These results indicate that CiNF-YA1 may activate CiFT expression in response to drought and low temperatures by binding to the CiFT promoter. CiFT then forms a complex with CiFE to activate CiLFY, thereby promoting the flowering of adult citrus.


Asunto(s)
Citrus , Citrus/genética , Citrus/metabolismo , Regulación de la Expresión Génica de las Plantas , Temperatura , Sequías , Flores/genética , Plantas Modificadas Genéticamente/metabolismo
6.
Plants (Basel) ; 11(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36015401

RESUMEN

Kiwifruit is commonly sensitive to waterlogging stress, and grafting onto a waterlogging-tolerant rootstock is an efficient strategy for enhancing the waterlogging tolerance of kiwifruit plants. KR5 (Actinidia valvata) is more tolerant to waterlogging than 'Hayward' (A. deliciosa) and is a potential resistant rootstock for kiwifruit production. Here, we focused on evaluating the performance of the waterlogging-sensitive kiwifruit scion cultivar 'Zhongmi 2' when grafted onto KR5 (referred to as ZM2/KR5) and Hayward (referred to as ZM2/HWD) rootstocks, respectively, under waterlogging stress. The results showed 'Zhongmi 2' performed much better when grafted onto KR5 than when grafted onto 'Hayward', exhibiting higher photosynthetic efficiency and reduced reactive oxygen species (ROS) damage. Furthermore, the roots of ZM2/KR5 plants showed greater root activity and energy supply, lower ROS damage, and more stable osmotic adjustment ability than the roots of ZM2/HWD plants under waterlogging stress. In addition, we detected the expression of six key genes involved in the kiwifruit waterlogging response mechanism, and these genes were remarkably induced in the ZM2/KR5 roots but not in the ZM2/HWD roots under waterlogging stress. Moreover, principal component analysis (PCA) further demonstrated the differences in the physiological responses of the ZM2/KR5 and ZM2/HWD plants under waterlogging stress. These results demonstrated that the KR5 rootstock can improve the waterlogging tolerance of grafted kiwi plants by regulating physiological and biochemical metabolism and molecular responses.

7.
Hortic Res ; 9: uhac056, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35702366

RESUMEN

The long juvenile period of perennial woody plants is a major constraint in breeding programs. FLOWERING LOCUS T (FT) protein is an important mobile florigen signal that induces plant flowering. However, whether FT can be transported in woody plants to shorten the juvenile period is unknown, and its transport mechanism remains unclear. In this study, trifoliate orange FT (ToFT) and Arabidopsis FT (AtFT, which has been confirmed to be transportable in Arabidopsis) as a control were transformed into tomato and trifoliate orange, and early flowering was induced in the transgenic plants. Long-distance and two-way (upward and downward) transmission of ToFT and AtFT proteins was confirmed in both tomato and trifoliate orange using grafting and western blot analysis. However, rootstocks of transgenic trifoliate orange could not induce flowering in grafted wild-type juvenile scions because of the low accumulation of total FT protein in the grafted scions. It was further confirmed that endogenous ToFT protein was reduced in trifoliate orange, and the accumulation of the transported ToFT and AtFT proteins was lower than that in grafted juvenile tomato scions. Furthermore, the trifoliate orange FT-INTERACTING PROTEIN1 homolog (ToFTIP1) was isolated by yeast two-hybrid analysis. The FTIP1 homolog may regulate FT transport by interacting with FT in tomato and trifoliate orange. Our findings suggest that FT transport may be conserved between the tomato model and woody plants. However, in woody plants, the transported FT protein did not accumulate in significant amounts in the grafted wild-type juvenile scions and induce the scions to flower.

8.
Plant J ; 111(1): 164-182, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35460135

RESUMEN

Drought is a major environmental stress that severely affects plant growth and crop productivity. FRIGIDA (FRI) is a key regulator of flowering time and drought tolerance in model plants. However, little is known regarding its functions in woody plants, including citrus. Thus, we explored the functional role of the citrus FRI ortholog (CiFRI) under drought. Drought treatment induced CiFRI expression. CiFRI overexpression enhanced drought tolerance in transgenic Arabidopsis and citrus, while CiFRI suppression increased drought susceptibility in citrus. Moreover, transcriptomic profiling under drought conditions suggested that CiFRI overexpression altered the expression of numerous genes involved in the stress response, hormone biosynthesis, and signal transduction. Mechanistic studies revealed that citrus dehydrin likely protects CiFRI from stress-induced degradation, thereby enhancing plant drought tolerance. In addition, a citrus brassinazole-resistant (BZR) transcription factor family member (CiBZR1) directly binds to the CiFRI promoter to activate its expression under drought conditions. CiBZR1 also enhanced drought tolerance in transgenic Arabidopsis and citrus. These findings further our understanding of the molecular mechanisms underlying the CiFRI-mediated drought stress response in citrus.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Citrus , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citrus/genética , Citrus/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Plant Sci ; 319: 111263, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35487669

RESUMEN

PISTILLATA (PI), as a member of MADS-box transcription factor, plays an important role in petal and stamen specification in Arabidopsis. However, little is known about PI-like genes in citrus. To understand the molecular mechanism of PI during the developmental process of citrus flower, a PI-like gene CcMADS20 was isolated from Citrus Clemantina. Sequence alignment and phylogenetic analysis revealed that CcMADS20 had relatively high similarity with PI-like homolog and was classified in the core dicotyledonous group. The temporal and spatial expression analyses showed that CcMADS20 was specifically expressed in petal and stamen of citrus flower, which was consistent with PI expression pattern in Arabidopsis. Protein interaction revealed that CcMADS20 could form heterodimer with AP3-like proteins. Furthermore, ectopic overexpression of CcMADS20 in Arabidopsis resulted in transformation of sepals into petal-like structure, as observed in other plants overexpressing a functional PI-like homolog. Additionally, promoter fragments of CcMADS20 were also cloned in the representative 21 citrus varieties. Interestingly, four types of promoters were discovered in these citrus varieties, resulting from two stable insert/deletion fragments (Locus1 and Locus2). The homo/hetero-zygosity of promoter alleles in each variety was strongly related to the evolutionary origin of citrus. Four promoters activity analysis indicated that Locus1 presence inhibited CcMADS20 transcriptional activity and Locus2 presence promoted its transcriptional activity. These findings suggested that CcMADS20 determines petal and stamen development during the evolutionary process of citrus and four promoters discovered, as effective genetic markers, are valuable for citrus breeding practices.


Asunto(s)
Arabidopsis , Citrus , Arabidopsis/metabolismo , Citrus/genética , Citrus/metabolismo , Proteínas de Dominio MADS/metabolismo , Filogenia , Fitomejoramiento
10.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35328659

RESUMEN

Actinidia valvata possesses waterlogging tolerance; however, the mechanisms underlying this trait are poorly characterized. Here, we performed a transcriptome analysis by combining single-molecule real-time (SMRT) sequencing and Illumina RNA sequencing and investigated the physiological responses of the roots of KR5 (A. valvata, a tolerant genotype) after 0, 12, 24 and 72 h of waterlogging stress. KR5 roots responded to waterlogging stress mainly via carbohydrate and free amino acids metabolism and reactive oxygen species (ROS) scavenging pathways. Trehalose-6-phosphate synthase (TPS) activity, alcohol dehydrogenase (ADH) activity and the total free amino acid content increased significantly under waterlogging stress. The nicotinamide adenine dinucleotide-dependent glutamate synthase/alanine aminotransferase (NADH-GOGAT/AlaAT) cycle was correlated with alanine accumulation. Levels of genes encoding peroxidase (POD) and catalase (CAT) decreased and enzyme activity increased under waterlogging stress. Members of the LATERAL ORGAN BOUNDARIES (LOB), AP2/ERF-ERF, Trihelix and C3H transcription factor families were identified as potential regulators of the transcriptional response. Several hub genes were identified as key factors in the response to waterlogging stress by a weighted gene co-expression network analysis (WGCNA). Our results provide insights into the factors contributing to waterlogging tolerance in kiwifruit, providing a basis for further studies of interspecific differences in an important plant trait and for molecular breeding.


Asunto(s)
Actinidia , Actinidia/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , RNA-Seq , Estrés Fisiológico/genética , Transcriptoma
12.
Planta ; 255(1): 24, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34928452

RESUMEN

MAIN CONCLUSION: Salicylic acid (SA) and drought stress promote more flowering in sweet orange. The physiological response and molecular mechanism underlying stress-induced floral initiation were discovered by transcriptome profiling. Numerous flowering-regulated genes were identified, and ectopically expressed CsLIP2A promotes early flowering in Arabidopsis. Floral initiation is a critical developmental mechanism associated with external factors, and citrus flowering is mainly regulated by drought stress. However, little is known about the intricate regulatory network involved in stress-induced flowering in citrus. To understand the molecular mechanism of floral initiation in citrus, flower induction was performed on potted Citrus sinensis trees under the combined treatment of salicylic acid (SA) and drought (DR). Physiological analysis revealed that SA treatment significantly normalized the drastic effect of drought stress by increasing antioxidant enzyme activities (SOD, POD, and CAT), relative leaf water content, total chlorophyll, and proline contents and promoting more flowering than drought treatment. Analysis of transcriptome changes in leaves from different treatments showed that 1135, 2728 and 957 differentially expressed genes (DEGs) were revealed in response to DR, SD (SA + DR), and SA (SA + well water) treatments in comparison with the well watered plants, respectively. A total of 2415, 2318 and 1933 DEGs were expressed in DR, SD, and SA in comparison with water recovery, respectively. Some key flowering genes were more highly expressed in SA-treated drought plants than in DR-treated plants. GO enrichment revealed that SA treatment enhances the regulation and growth of meristem activity under drought conditions, but no such a pathway was found to be highly enriched in the control. Furthermore, we focused on various hormones, sugars, starch metabolism, and biosynthesis-related genes. The KEGG analysis demonstrated that DEGs enriched in starch sucrose metabolism and hormonal signal transduction pathways probably account for stress-induced floral initiation in citrus. In addition, a citrus LIPOYLTRANSFERSAE 2A homologous (LIP2A) gene was upregulated by SD treatment. Ectopic expression of CsLIP2A exhibited early flowering in transgenic Arabidopsis. Taken together, this study provides new insight that contributes to citrus tree floral initiation under the SA-drought scenario as well as an excellent reference for stress-induced floral initiation in woody trees.


Asunto(s)
Citrus , Sequías , Citrus/genética , Ácido Salicílico/farmacología , Transcriptoma , Árboles
13.
Plants (Basel) ; 10(12)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34961057

RESUMEN

Rootstocks from Actinidia valvata are much more tolerant to waterlogging stress than those from Actinidia deliciosa, which are commonly used in kiwifruit production. To date, the tolerance mechanism of A. valvata rootstocks' adaptation to waterlogging stress has not been well explored. In this study, the responses of KR5 (A. valvata) and 'Hayward' (A. deliciosa) to waterlogging stress were compared. Results showed that KR5 plants performed much better than 'Hayward' during waterlogging by exhibiting higher net photosynthetic rates in leaves, more rapid formation of adventitious roots at the base of stems, and less severe damage to the main root system. In addition to morphological adaptations, metabolic responses of roots including sufficient sucrose reserves, modulated adjustment of fermentative enzymes, avoidance of excess lactic acid and ethanol accumulation, and promoted accumulation of total amino acids all possibly rendered KR5 plants more tolerant to waterlogging stress compared to 'Hayward' plants. Lysine contents of roots under waterlogging stress were increased in 'Hayward' and decreased in KR5 compared with their corresponding controls. Overall, our results revealed the morphological and metabolic adaptations of two kiwifruit rootstocks to waterlogging stress, which may be responsible for their genotypic difference in waterlogging tolerance.

14.
BMC Plant Biol ; 21(1): 365, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34380415

RESUMEN

BACKGROUND: Kiwifruit (Actinidia Lindl.) is considered an important fruit species worldwide. Due to its temperate origin, this species is highly vulnerable to freezing injury while under low-temperature stress. To obtain further knowledge of the mechanism underlying freezing tolerance, we carried out a hybrid transcriptome analysis of two A. arguta (Actinidi arguta) genotypes, KL and RB, whose freezing tolerance is high and low, respectively. Both genotypes were subjected to - 25 °C for 0 h, 1 h, and 4 h. RESULTS: SMRT (single-molecule real-time) RNA-seq data were assembled using the de novo method, producing 24,306 unigenes with an N50 value of 1834 bp. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs showed that they were involved in the 'starch and sucrose metabolism', the 'mitogen-activated protein kinase (MAPK) signaling pathway', the 'phosphatidylinositol signaling system', the 'inositol phosphate metabolism', and the 'plant hormone signal transduction'. In particular, for 'starch and sucrose metabolism', we identified 3 key genes involved in cellulose degradation, trehalose synthesis, and starch degradation processes. Moreover, the activities of beta-GC (beta-glucosidase), TPS (trehalose-6-phosphate synthase), and BAM (beta-amylase), encoded by the abovementioned 3 key genes, were enhanced by cold stress. Three transcription factors (TFs) belonging to the AP2/ERF, bHLH (basic helix-loop-helix), and MYB families were involved in the low-temperature response. Furthermore, weighted gene coexpression network analysis (WGCNA) indicated that beta-GC, TPS5, and BAM3.1 were the key genes involved in the cold response and were highly coexpressed together with the CBF3, MYC2, and MYB44 genes. CONCLUSIONS: Cold stress led various changes in kiwifruit, the 'phosphatidylinositol signaling system', 'inositol phosphate metabolism', 'MAPK signaling pathway', 'plant hormone signal transduction', and 'starch and sucrose metabolism' processes were significantly affected by low temperature. Moreover, starch and sucrose metabolism may be the key pathway for tolerant kiwifruit to resist low temperature damages. These results increase our understanding of the complex mechanisms involved in the freezing tolerance of kiwifruit under cold stress and reveal a series of candidate genes for use in breeding new cultivars with enhanced freezing tolerance.


Asunto(s)
Aclimatación/genética , Actinidia/genética , Actinidia/fisiología , Congelación , Regulación de la Expresión Génica de las Plantas , Frutas/genética , Frutas/fisiología , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Sistema de Señalización de MAP Quinasas , Anotación de Secuencia Molecular , Fosfatidilinositoles/metabolismo , Fitomejoramiento , Reguladores del Crecimiento de las Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Almidón/metabolismo , Sacarosa/metabolismo
15.
Int J Mol Sci ; 22(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066408

RESUMEN

WUSCHEL-related homeobox (WOX) transcription factors (TFs) are well known for their role in plant development but are rarely studied in citrus. In this study, we identified 11 putative genes from the sweet orange genome and divided the citrus WOX genes into three clades (modern/WUSCHEL(WUS), intermediate, and ancient). Subsequently, we performed syntenic relationship, intron-exon organization, motif composition, and cis-element analysis. Co-expression analysis based on RNA-seq and tissue-specific expression patterns revealed that CsWOX gene expression has multiple intrinsic functions. CsWUS homolog of AtWUS functions as a transcriptional activator and binds to specific DNA. Overexpression of CsWUS in tobacco revealed dramatic phenotypic changes, including malformed leaves and reduced gynoecia with no seed development. Silencing of CsWUS in lemon using the virus-induced gene silencing (VIGS) system implied the involvement of CsWUS in cells of the plant stem. In addition, CsWUS was found to interact with CsCYCD3, an ortholog in Arabidopsis (AtCYCD3,1). Yeast one-hybrid screening and dual luciferase activity revealed that two TFs (CsRAP2.12 and CsHB22) bind to the promoter of CsWUS and regulate its expression. Altogether, these results extend our knowledge of the WOX gene family along with CsWUS function and provide valuable findings for future study on development regulation and comprehensive data of WOX members in citrus.


Asunto(s)
Citrus sinensis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Familia de Multigenes , Proteínas de Plantas/genética , Simulación por Computador , Secuencia Conservada/genética , Exones/genética , Flores/genética , Silenciador del Gen , Intrones/genética , Motivos de Nucleótidos/genética , Fenotipo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Mapas de Interacción de Proteínas/genética , Fracciones Subcelulares/metabolismo , Sintenía/genética , Nicotiana/genética , Agua
16.
Int J Mol Sci ; 22(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072027

RESUMEN

A high-density genetic linkage map is essential for genetic and genomic studies including QTL mapping, genome assembly, and comparative genomic analysis. Here, we constructed a citrus high-density linkage map using SSR and SNP markers, which are evenly distributed across the citrus genome. The integrated linkage map contains 4163 markers with an average distance of 1.12 cM. The female and male linkage maps contain 1478 and 2976 markers with genetic lengths of 1093.90 cM and 1227.03 cM, respectively. Meanwhile, a genetic map comparison demonstrates that the linear order of common markers is highly conserved between the clementine mandarin and Poncirus trifoliata. Based on this high-density integrated citrus genetic map and two years of deciduous phenotypic data, two loci conferring leaf abscission phenotypic variation were detected on scaffold 1 (including 36 genes) and scaffold 8 (including 107 genes) using association analysis. Moreover, the expression patterns of 30 candidate genes were investigated under cold stress conditions because cold temperature is closely linked with the deciduous trait. The developed high-density genetic map will facilitate QTL mapping and genomic studies, and the localization of the leaf abscission deciduous trait will be valuable for understanding the mechanism of this deciduous trait and citrus breeding.


Asunto(s)
Mapeo Cromosómico , Poncirus/genética , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Respuesta al Choque por Frío , Biología Computacional/métodos , Ligamiento Genético , Marcadores Genéticos , Humanos , Mutación INDEL , Repeticiones de Microsatélite , Fenotipo , Polimorfismo de Nucleótido Simple
17.
Front Plant Sci ; 12: 628969, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34140959

RESUMEN

Cold stress poses a serious treat to cultivated kiwifruit since this plant generally has a weak ability to tolerate freezing tolerance temperatures. Surprisingly, however, the underlying mechanism of kiwifruit's freezing tolerance remains largely unexplored and unknown, especially regarding the key pathways involved in conferring this key tolerance trait. Here, we studied the metabolome and transcriptome profiles of the freezing-tolerant genotype KL (Actinidia arguta) and freezing-sensitive genotype RB (A. arguta), to identify the main pathways and important metabolites related to their freezing tolerance. A total of 565 metabolites were detected by a wide-targeting metabolomics method. Under (-25°C) cold stress, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway annotations showed that the flavonoid metabolic pathways were specifically upregulated in KL, which increased its ability to scavenge for reactive oxygen species (ROS). The transcriptome changes identified in KL were accompanied by the specific upregulation of a codeinone reductase gene, a chalcone isomerase gene, and an anthocyanin 5-aromatic acyltransferase gene. Nucleotides metabolism and phenolic acids metabolism pathways were specifically upregulated in RB, which indicated that RB had a higher energy metabolism and weaker dormancy ability. Since the LPCs (LysoPC), LPEs (LysoPE) and free fatty acids were accumulated simultaneously in both genotypes, these could serve as biomarkers of cold-induced frost damages. These key metabolism components evidently participated in the regulation of freezing tolerance of both kiwifruit genotypes. In conclusion, the results of this study demonstrated the inherent differences in the composition and activity of metabolites between KL and RB under cold stress conditions.

18.
J Exp Bot ; 72(20): 7002-7019, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34185082

RESUMEN

Shoot-tip abortion is a very common phenomenon in some perennial woody plants and it affects the height, architecture, and branch orientation of trees; however, little is currently known about the underlying mechanisms. In this study, we identified a gene in sweet orange (Citrus sinensis) encoding a KNAT-like protein (CsKN1) and found high expression in the shoot apical meristem (SAM). Overexpression of CsKN1 in transgenic plants prolonged the vegetative growth of SAMs, whilst silencing resulted in either the loss or inhibition of SAMs. Yeast two-hybrid analysis revealed that CsKN1 interacted with another citrus KNAT-like protein (CsKN2), and overexpression of CsKN2 in lemon and tobacco caused an extreme multiple-meristem phenotype. Overexpression of CsKN1 and CsKN2 in transgenic plants resulted in the differential expression of numerous genes related to hormone biosynthesis and signaling. Yeast one-hybrid analysis revealed that the CsKN1-CsKN2 complex can bind to the promoter of citrus floral meristem gene LEAFY (CsLFY) and inhibit its expression. These results indicated that CsKN1 might prolong the vegetative growth period of SAMs by delaying flowering. In addition, an ethylene-responsive factor (CsERF) was found to bind to the CsKN1 promoter and suppresses its transcription. Overexpression of CsERF in Arabidopsis increased the contents of ethylene and reactive oxygen species, which might induce the occurrence of shoot-tip abscission. On the basis of our results, we conclude that CsKN1 and CsKN2 might work cooperatively to regulate the shoot-tip abscission process in spring shoots of sweet orange.


Asunto(s)
Citrus sinensis , Citrus , Citrus/genética , Citrus/metabolismo , Citrus sinensis/genética , Citrus sinensis/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Meristema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Int J Mol Sci ; 22(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34069068

RESUMEN

MADS-box genes are involved in various developmental processes including vegetative development, flower architecture, flowering, pollen formation, seed and fruit development. However, the function of most MADS-box genes and their regulation mechanism are still unclear in woody plants compared with model plants. In this study, a MADS-box gene (CiMADS43) was identified in citrus. Phylogenetic and sequence analysis showed that CiMADS43 is a GOA-like Bsister MADS-box gene. It was localized in the nucleus and as a transcriptional activator. Overexpression of CiMADS43 promoted early flowering and leaves curling in transgenic Arabidopsis. Besides, overexpression or knockout of CiMADS43 also showed leaf curl phenotype in citrus similar to that of CiMADS43 overexpressed in Arabidopsis. Protein-protein interaction found that a SEPALLATA (SEP)-like protein (CiAGL9) interacted with CiMADS43 protein. Interestingly, CiAGL9 also can bind to the CiMADS43 promoter and promote its transcription. Expression analysis also showed that these two genes were closely related to seasonal flowering and the development of the leaf in citrus. Our findings revealed the multifunctional roles of CiMADS43 in the vegetative and reproductive development of citrus. These results will facilitate our understanding of the evolution and molecular mechanisms of MADS-box genes in citrus.


Asunto(s)
Citrus/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Secuencia de Aminoácidos , Citrus/genética , Citrus/metabolismo , Flores/genética , Flores/metabolismo , Proteínas de Dominio MADS/genética , Fenotipo , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Homología de Secuencia
20.
Hortic Res ; 8(1): 97, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33931620

RESUMEN

Beta-amylase (BAM) plays an important role in plant resistance to cold stress. However, the specific role of the BAM gene in freezing tolerance is poorly understood. In this study, we demonstrated that a cold-responsive gene module was involved in the freezing tolerance of kiwifruit. In this module, the expression of AaBAM3.1, which encodes a functional protein, was induced by cold stress. AaBAM3.1-overexpressing kiwifruit lines showed increased freezing tolerance, and the heterologous overexpression of AaBAM3.1 in Arabidopsis thaliana resulted in a similar phenotype. The results of promoter GUS activity and cis-element analyses predicted AaCBF4 to be an upstream transcription factor that could regulate AaBAM3.1 expression. Further investigation of protein-DNA interactions by using yeast one-hybrid, GUS coexpression, and dual luciferase reporter assays confirmed that AaCBF4 directly regulated AaBAM3.1 expression. In addition, the expression of both AaBAM3.1 and AaCBF4 in kiwifruit responded positively to cold stress. Hence, we conclude that the AaCBF-AaBAM module is involved in the positive regulation of the freezing tolerance of kiwifruit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...