Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1380220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799458

RESUMEN

African swine fever (ASF) is an acute hemorrhagic and devastating infectious disease affecting domestic pigs and wild boars. It is caused by the African swine fever virus (ASFV), which is characterized by genetic diversity and sophisticated immune evasion strategies. To facilitate infection, ASFV encodes multiple proteins to antagonize host innate immune responses, thereby contributing to viral virulence and pathogenicity. The molecular mechanisms employed by ASFV-encoded proteins to modulate host antiviral responses have not been comprehensively elucidated. In this study, it was observed that the ASFV MGF505-6R protein, a member of the multigene family 505 (MGF505), effectively suppressed the activation of the interferon-beta (IFN-ß) promoter, leading to reduced mRNA levels of antiviral genes. Additional evidence has revealed that MGF505-6R antagonizes the cGAS-STING signaling pathway by interacting with the stimulator of interferon genes (STING) for degradation in the autophagy-lysosomal pathway. The domain mapping revealed that the N-terminal region (1-260aa) of MGF505-6R is the primary domain responsible for interacting with STING, while the CTT domain of STING is crucial for its interaction with MGF505-6R. Furthermore, MGF505-6R also inhibits the activation of STING by reducing the K63-linked polyubiquitination of STING, leading to the disruption of STING oligomerization and TANK binding kinase 1 (TBK1) recruitment, thereby impairing the phosphorylation and nuclear translocation of interferon regulatory factor 3 (IRF3). Collectively, our study elucidates a novel strategy developed by ASFV MGF505-6R to counteract host innate immune responses. This discovery may offer valuable insights for further exploration of ASFV immune evasion mechanisms and antiviral strategies.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Proteínas de la Membrana , Proteínas Virales , Animales , Virus de la Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/genética , Porcinos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/metabolismo , Proteínas Virales/inmunología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Humanos , Inmunidad Innata , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/inmunología , Transducción de Señal , Proteolisis , Células HEK293 , Interacciones Huésped-Patógeno/inmunología , Evasión Inmune , Interferón beta/metabolismo , Interferón beta/inmunología , Interferón beta/genética
2.
J Antimicrob Chemother ; 78(3): 747-756, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36659862

RESUMEN

OBJECTIVES: The genus Streptococcus contains species of important zoonotic pathogens such as those that cause bovine mastitis. Unfortunately, many Streptococcus species have developed antibiotic resistance. Phage lysins are considered promising alternatives to antibiotics because it is difficult for bacteria to develop lysin resistance. However, there remains a lack of phage lysin resources for the treatment of streptococci-induced mastitis. METHODS: We identified the prophage lysin Lys0859 from the genome of the Streptococcus suis SS0859 strain. Lys0859 was subsequently characterized to determine its host range, MIC, bactericidal activity in milk, and ability to clear biofilms in vitro. Finally, to determine the effects of Lys0859 on the treatment of both bovine mastitis and S. suis infection in vivo, we established models of Streptococcus agalactiae ATCC 13813-induced mastitis and S. suis serotype 2 SC19 systemic infection. RESULTS: Our results demonstrate that Lys0859 possesses broad-spectrum lytic activity against Streptococcus and Staphylococcus species isolated from animals with bovine mastitis and 15 serotypes of S. suis isolated from swine. Intramammary and intramuscular injection of Lys0859 reduced the number of bacteria in mammary tissue by 3.75 and 1.45 logs compared with the PBS group, respectively. Furthermore, 100 µg/mouse of Lys0859 administered intraperitoneally at 1 h post-infection protected 83.3% (5/6) of mice from a lethal dose of S. suis infection. CONCLUSIONS: Overall, our results enhance the understanding and development of new strategies to combat both streptococci-induced mastitis and S. suis infection.


Asunto(s)
Bacteriófagos , Mastitis Bovina , Infecciones Estreptocócicas , Fagos de Streptococcus , Streptococcus suis , Femenino , Bovinos , Animales , Porcinos , Ratones , Humanos , Profagos/genética , Mastitis Bovina/tratamiento farmacológico , Antibacterianos/farmacología , Infecciones Estreptocócicas/microbiología
3.
Microbiol Spectr ; 10(5): e0291422, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36165776

RESUMEN

The rapid emergence of phage-resistant bacterial mutants is a major challenge for phage therapy. Phage cocktails have been considered one approach to mitigate this issue. However, the synergistic effect of randomly selected phages in the cocktails is ambiguous. Here, we rationally designed a phage cocktail consisting of four phages that utilize the lipopolysaccharide (LPS) O antigen, the LPS outer core, the LPS inner core, and the outer membrane proteins BtuB and TolC on the Salmonella enterica serovar Enteritidis cell surface as receptors. We demonstrated that the four-phage cocktail could significantly delay the emergence of phage-resistant bacterial mutants compared to the single phage. To investigate the fitness costs associated with phage resistance, we characterized a total of 80 bacterial mutants resistant to a single phage or the four-phage cocktail. We observed that mutants resistant to the four-phage cocktail were more sensitive to several antibiotics than the single-phage-resistant mutants. In addition, all mutants resistant to the four-phage cocktail had significantly reduced virulence compared to wild-type strains. Our mouse model of Salmonella Enteritidis infection also indicated that the four-phage cocktail exhibited an enhanced therapeutic effect. Together, our work demonstrates an efficient strategy to design phage cocktails by combining phages with different bacterial receptors, which can steer the evolution of phage-resistant strains toward clinically exploitable phenotypes. IMPORTANCE The selection pressure of phage promotes bacterial mutation, which results in a fitness cost. Such fitness trade-offs are related to the host receptor of the phage; therefore, we can utilize knowledge of bacterial receptors used by phages as a criterion for designing phage cocktails. Here, we evaluated the efficacy of a phage cocktail made up of phages that target four different receptors on Salmonella Enteritidis through in vivo and in vitro experiments. Importantly, we found that pressure from phage cocktails with different receptors can drive phage-resistant bacterial mutants to evolve in a direction that entails more severe fitness costs, resulting in reduced virulence and increased susceptibility to antibiotics. These findings suggest that phage cocktail therapy using combinations of phages targeting different important receptors (e.g., LPS or the efflux pump AcrAB-TolC) on the host surface can steer the host bacteria toward more detrimental surface mutations than single-phage therapy, resulting in more favorable therapeutic outcomes.


Asunto(s)
Bacteriófagos , Infecciones por Salmonella , Ratones , Animales , Salmonella enteritidis , Bacteriófagos/genética , Lipopolisacáridos/metabolismo , Virulencia , Antígenos O , Antibacterianos/farmacología , Proteínas de la Membrana
4.
Appl Environ Microbiol ; 86(9)2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32111587

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) strains are important zoonotic foodborne pathogens, causing diarrhea, hemorrhagic colitis, and life-threatening hemolytic uremic syndrome (HUS) in humans. However, antibiotic treatment of STEC infection is associated with an increased risk of HUS. Therefore, there is an urgent need for early and effective therapeutic strategies. Here, we isolated lytic T7-like STEC phage PHB19 and identified a novel O91-specific polysaccharide depolymerase (Dep6) in the C terminus of the PHB19 tailspike protein. Dep6 exhibited strong hydrolase activity across wide ranges of pH (pH 4 to 8) and temperature (20 to 60°C) and degraded polysaccharides on the surface of STEC strain HB10. In addition, both Dep6 and PHB19 degraded biofilms formed by STEC strain HB10. In a mouse STEC infection model, delayed Dep6 treatment (3 h postinfection) resulted in only 33% survival, compared with 83% survival when mice were treated simultaneously with infection. In comparison, pretreatment with Dep6 led to 100% survival compared with that of the control group. Surprisingly, a single PHB19 treatment resulted in 100% survival in all three treatment protocols. Moreover, a significant reduction in the levels of proinflammatory cytokines was observed at 24 h postinfection in Dep6- or PHB19-treated mice. These results demonstrated that Dep6 or PHB19 might be used as a potential therapeutic agent to prevent STEC infection.IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen worldwide. The Shiga-like toxin causes diarrhea, hemorrhagic colitis, and life-threatening hemolytic uremic syndrome (HUS) in humans. Although antibiotic therapy is still used for STEC infections, this approach may increase the risk of HUS. Phages or phage-derived depolymerases have been used to treat bacterial infections in animals and humans, as in the case of the "San Diego patient" treated with a phage cocktail. Here, we showed that phage PHB19 and its O91-specific polysaccharide depolymerase Dep6 degraded STEC biofilms and stripped the lipopolysaccharide (LPS) from STEC strain HB10, which was subsequently killed by serum complement in vitro In a mouse model, PHB19 and Dep6 protected against STEC infection and caused a significant reduction in the levels of proinflammatory cytokines. This study reports the use of an O91-specific polysaccharide depolymerase for the treatment of STEC infection in mice.


Asunto(s)
Colifagos/fisiología , Glicósido Hidrolasas/genética , Escherichia coli Shiga-Toxigénica/virología , Proteínas Virales/genética , Colifagos/genética , Glicósido Hidrolasas/metabolismo , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...