Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 12(11)2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34828325

RESUMEN

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is not only involved in carbohydrate metabolism, but also plays an important role in stress resistance. However, it has not been reported in Brassica oleracea. In this study, we performed a genome-wide identification of BoGAPDH in B. oleracea and performed cloning and expression analysis of one of the differentially expressed genes, BoGAPC. A total of 16 members of the BoGAPDH family were identified in B. oleracea, which were conserved, distributed unevenly on chromosomes and had tandem repeat genes. Most of the genes were down-regulated during self-pollination, and the highest expression was found in stigmas and sepals. Different transcriptome data showed that BoGAPDH genes were differentially expressed under stress, which was consistent with the results of qRT-PCR. We cloned and analyzed the differentially expressed gene BoGAPC and found that it was in the down-regulated mode 1 h after self-pollination, and the expression was the highest in the stigma, which was consistent with the result of GUS staining. The promoter region of the gene not only has stress response elements and plant hormone response elements, but also has a variety of specific elements for regulating floral organ development. Subcellular localization indicates that the BoGAPC protein is located in the cytoplasm and belongs to the active protein in the cytoplasm. The results of prokaryotic expression showed that the size of the BoGAPC protein was about 37 kDa, which was consistent with the expected results, indicating that the protein was induced in prokaryotic cells. The results of yeast two-hybrid and GST pull-down showed that the SRK kinase domain interacted with the BoGAPC protein. The above results suggest that the BoGAPDH family of B. oleracea plays an important role in the process of plant stress resistance, and the BoGAPC gene may be involved in the process of self-incompatibility in B. oleracea, which may respond to SI by encoding proteins directly interacting with SRK.


Asunto(s)
Brassica/crecimiento & desarrollo , Mapeo Cromosómico/métodos , Clonación Molecular/métodos , Perfilación de la Expresión Génica/métodos , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Brassica/genética , Brassica/metabolismo , Cromosomas de las Plantas/genética , Secuencia Conservada , Regulación hacia Abajo , Evolución Molecular , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Peso Molecular , Familia de Multigenes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polinización , Estrés Fisiológico
2.
Genes (Basel) ; 10(12)2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31810369

RESUMEN

The plant U-box (PUB) protein family plays an important role in plant growth and development. The U-box gene family has been well studied in Arabidopsis thaliana, Brassica rapa, rice, etc., but there have been no systematic studies in Brassica oleracea. In this study, we performed genome-wide identification and evolutionary analysis of the U-box protein family of B. oleracea. Firstly, based on the Brassica database (BRAD) and the Bolbase database, 99 Brassicaoleracea PUB genes were identified and divided into seven groups (I-VII). The BoPUB genes are unevenly distributed on the nine chromosomes of B. oleracea, and there are tandem repeat genes, leading to family expansion from the A. thaliana genome to the B. oleracea genome. The protein interaction network, GO annotation, and KEGG pathway enrichment analysis indicated that the biological processes and specific functions of the BoPUB genes may mainly involve abiotic stress. RNA-seq transcriptome data of different pollination times revealed spatiotemporal expression specificity of the BoPUB genes. The differential expression profile was consistent with the results of RT-qPCR analysis. Additionally, a large number of pollen-specific cis-acting elements were found in promoters of differentially expressed genes (DEG), which verified that these significantly differentially expressed genes after self-pollination (SP) were likely to participate in the self-incompatibility (SI) process, including gene encoding ARC1, a well-known downstream protein of SI in B. oleracea. Our study provides valuable information indicating that the BoPUB genes participates not only in the abiotic stress response, but are also involved in pollination.


Asunto(s)
Brassica , Bases de Datos Genéticas , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Complejos de Ubiquitina-Proteína Ligasa , Brassica/enzimología , Brassica/genética , Evolución Molecular , Genoma de Planta , Estudio de Asociación del Genoma Completo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Polen , Polinización , Complejos de Ubiquitina-Proteína Ligasa/biosíntesis , Complejos de Ubiquitina-Proteína Ligasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...