Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Ying Yong Sheng Tai Xue Bao ; 35(3): 806-816, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646769

RESUMEN

Yanhe River Basin is located in the hilly gully area of the Loess Plateau with serious soil erosion. Strong human activities in the middle and lower reaches lead to fragile ecological environment. Soil erosion status varies among different geomorphic units within the watershed (loess liang hilly and gully region, loess mao hilly and gully region, and broken platform region). In this study, we surveyed the benthic community from the Yanhe River Basin in April (spring) and October (autumn) of 2021. To evaluate the water ecological health status of the watershed and investigate the effects of different geomorphic units on the benthic integrity of the benthos, we constructed the benthic-index of biotical integrity (B-IBI) based on the biological data. We identified a total of 113 species of 73 genera in 4 phyla of benthic fauna, with aquatic insects as the dominant taxa in both seasons. Through screening 26 candidate indicators, we found that the spring B-IBI consisted of three indicators: relative abundance of individuals of dominant taxonomic units, family biotic index (FBI), and relative abundance of predator individuals, and that autumn B-IBI was composed of the number of taxonomic units of Ephemeroptera, FBI value, and the relative abundance of predator individuals. Results of the B-IBI evaluation showed that 83.3% of the sampling sites in the upper mainstem and tributaries were at a healthy condition, while only 28.6% sampling sites in the middle and lower mainstem and tributaries were at a healthy condition. In addition, the health status of the watershed was better in spring than in autumn. The Kruskal-Wallis nonparametric tests showed that benthic density, species number, and B-IBI percentile scores in the fragmented loess area were significantly higher in spring than in autumn, and significantly lower in autumn than in the loess liang hilly and gully region and loess mao hilly and gully region, being mainly caused by the increasing erosion due to the concentrated rainfall in wet season. Results of the redundancy analysis showed that key environmental factors affecting benthic community structure in spring were boulder substrate, chlorophyll-a, oxidation reduction potential, turbidity, conductivity, and dissolved oxygen, and were nitrate-nitrogen, oxidation reduction potential, and pH in autumn.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Invertebrados , Ríos , China , Animales , Monitoreo del Ambiente/métodos , Invertebrados/clasificación , Invertebrados/crecimiento & desarrollo , Insectos , Biodiversidad , Estaciones del Año
2.
Drug Des Devel Ther ; 18: 1175-1188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645986

RESUMEN

Purpose: Many herbs can promote neurological recovery following traumatic brain injury (TBI). There must lie a shared mechanism behind the common effectiveness. We aimed to explore the key therapeutic targets for TBI based on the common effectiveness of the medicinal plants. Material and methods: The TBI-effective herbs were retrieved from the literature as imputes of network pharmacology. Then, the active ingredients in at least two herbs were screened out as common components. The hub targets of all active compounds were identified through Cytohubba. Next, AutoDock vina was used to rank the common compound-hub target interactions by molecular docking. A highly scored compound-target pair was selected for in vivo validation. Results: We enrolled sixteen TBI-effective medicinal herbs and screened out twenty-one common compounds, such as luteolin. Ten hub targets were recognized according to the topology of the protein-protein interaction network of targets, including epidermal growth factor receptor (EGFR). Molecular docking analysis suggested that luteolin could bind strongly to the active pocket of EGFR. Administration of luteolin or the selective EGFR inhibitor AZD3759 to TBI mice promoted the recovery of body weight and neurological function, reduced astrocyte activation and EGFR expression, decreased chondroitin sulfate proteoglycans deposition, and upregulated GAP43 levels in the cortex. The effects were similar to those when treated with the selective EGFR inhibitor. Conclusion: The common effectiveness-based, common target screening strategy suggests that inhibition of EGFR can be an effective therapy for TBI. This strategy can be applied to discover core targets and therapeutic compounds in other diseases.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Simulación del Acoplamiento Molecular , Farmacología en Red , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Animales , Ratones , Plantas Medicinales/química , Masculino , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Luteolina/farmacología , Luteolina/química , Ratones Endogámicos C57BL , Humanos
3.
Clin Res Hepatol Gastroenterol ; 48(6): 102344, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38641249

RESUMEN

BACKGROUND AND AIMS: Postoperative adjuvant transcatheter arterial chemoembolization (TACE) can prevent recurrence of hepatocellular carcinoma (HCC) in certain patients. This study aimed to identify the potential beneficiaries of adjuvant TACE. METHODS: 477 patients who underwent curative resection for HCC were enrolled in this retrospectively cohort study. The trajectory of the prognostic nutritional index (PNI) during the perioperative period was fitted using a latent-class growth mixed model. The association between adjuvant TACE and recurrence-free survival in each PNI group was assessed using the Kaplan-Meier curve. Furthermore, Cox regression analysis was conducted to identify the risk factors for early recurrence after adjuvant TACE and develop a nomogram model. RESULTS: Patients in the PNI group III had a high risk of recurrence and could benefit from adjuvant TACE (P = 0.009). The prognostic prediction model for adjuvant TACE (PAT) incorporated eight variables (PNI, tumor size, tumor number, microvascular invasion, sex, aspartate aminotransferase, gamma-glutamyl transferase, and degree of differentiation). Patients with PAT score >330 and 235-330 had significantly higher recurrence rates than those with PAT score <235 (P < 0.001). CONCLUSION: PNI may help guide the selection of adjuvant TACE beneficiaries. PAT demonstrated a high accuracy in predicting the prognosis of patients who underwent postoperative TACE.

4.
Medicina (Kaunas) ; 60(3)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38541083

RESUMEN

Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have been used to reduce glucose levels in patients with type 2 diabetes mellitus since 2005. This meta-analysis discusses the mechanisms and potential benefits of several GLP-1 RAs. In particular, this meta-analysis focuses on the safety and associations with weight loss, glucose reduction, cardiovascular outcomes, heart failure, and renal outcomes of GLP-1 RAs to determine their benefits for patients with different conditions. In terms of glycemic control and weight loss, semaglutide was statistically superior to other GLP-1 RAs. In terms of cardiovascular outcomes, 14 mg of semaglutide taken orally once daily and 1.8 mg of liraglutide injected once daily reduced the incidence of cardiovascular death, whereas other GLP-1 RAs did not provide similar benefits. Moreover, semaglutide was associated with superior outcomes for heart failure and cardiovascular death in non-diabetic obesity patients, whereas liraglutide worsened heart failure outcomes in diabetic patients with a reduced ejection fraction. Additionally, semaglutide, dulaglutide, and liraglutide were beneficial in terms of composite renal outcomes: These GLP-1 RAs were significantly associated with less new or persistent macroalbuminuria, but not with improved eGFR deterioration or reduced requirement for renal replacement therapy. However, GLP-1 RAs may benefit patients with type 2 diabetes mellitus or obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/efectos adversos , Liraglutida/efectos adversos , Agonistas Receptor de Péptidos Similares al Glucagón , Obesidad , Pérdida de Peso , Glucosa
5.
J Ethnopharmacol ; 328: 118126, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38556140

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The repairment of myelin sheaths is crucial for mitigating neurological impairments of intracerebral hemorrhage (ICH). However, the current research on remyelination processes in ICH remains limited. A representative traditional Chinese medicine, Buyang Huanwu decoction (BYHWD), shows a promising therapeutic strategy for ICH treatment. AIM OF THE STUDY: To investigate the pro-remyelination effects of BYHWD on ICH and explore the underlying mechanisms. MATERIALS AND METHODS: The collagenase-induced mice ICH model was created for investigation. BYHWD's protective effects were assessed by behavioral tests and histological staining. Transmission electron microscopy was used for displaying the structure of myelin sheaths. The remyelination and oligodendrocyte differentiation were evaluated by the expressions of myelin proteolipid protein (PLP), myelin basic protein (MBP), MBP/TAU, Olig2/CC1, and PDGFRα/proliferating cell nuclear antigen (PCNA) through RT-qPCR and immunofluorescence. Transcriptomics integrated with disease database analysis and experiments in vivo and in vitro revealed the microRNA-related underlying mechanisms. RESULTS: Here, we reported that BYHWD promoted the neurological function of ICH mice and improved remyelination by increasing PLP, MBP, and TAU, as well as restoring myelin structure. Besides, we showed that BYHWD promoted remyelination by boosting the differentiation of PDGFRα+ oligodendrocyte precursor cells into olig2+/CC1+ oligodendrocytes. Additionally, we demonstrated that the remyelination effects of BYHWD worked by inhibiting G protein-coupled receptor 17 (GPR17). miRNA sequencing integrated with miRNA database prediction screened potential miRNAs targeting GPR17. By applying immunofluorescence, RNA in situ hybridization and dual luciferase reporter gene assay, we confirmed that BYHWD suppressed GPR17 and improved remyelination by increasing miR-760-3p. CONCLUSIONS: BYHWD improves remyelination and neurological function in ICH mice by targeting miR-760-3p to inhibit GPR17. This study may shed light on the orchestration of remyelination mechanisms after ICH, thus providing novel insights for developing innovative prescriptions with brain-protective properties.


Asunto(s)
Medicamentos Herbarios Chinos , MicroARNs , Remielinización , Ratones , Animales , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Receptores Acoplados a Proteínas G/genética , MicroARNs/genética , Proteínas del Tejido Nervioso
6.
J Proteome Res ; 23(3): 1062-1074, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373391

RESUMEN

Hepatocellular carcinoma (HCC) is susceptible to early recurrence, but it lacks effective predictive biomarkers. In this study, we retrospectively selected 179 individuals as a discovery cohort (126 HCC patients and 53 liver cirrhosis (LC) patients) for screening candidate serum biomarkers of early recurrence based on data independent acquisition-mass spectrometry strategy. And then, the candidate biomarkers were validated in an additional independent cohort with 192 individuals (142 HCC patients and 50 LC patients) using parallel reaction monitoring targeted quantitative techniques (PXD047852). Eventually, we validated that gelsolin (GSN) concentrations were significantly lower in HCC than in LC (p < 0.0001), patients with low GSN concentrations had a poor prognosis (p < 0.0001), and GSN concentrations were significantly lower in early recurrence HCC than in late recurrence HCC (p < 0.0001). These trends were also observed in alpha-fetoprotein (AFP)-negative HCC patients. The area under the curve of machine-learning-based predictive model (GSN and microvascular invasion) for predicting early recurrence risk reached 0.803 (95% confidence interval (CI): 0.786-0.820) and maintained the same efficacy in AFP-negative patients. In conclusion, GSN is a novel serum biomarker for early recurrence of HCC. The model could provide timely warning to HCC patients at high risk of recurrence.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Gelsolina , Carcinoma Hepatocelular/diagnóstico , alfa-Fetoproteínas , Proteómica , Estudios Retrospectivos , Neoplasias Hepáticas/diagnóstico , Biomarcadores , Cirrosis Hepática/diagnóstico
7.
BMC Complement Med Ther ; 24(1): 48, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254101

RESUMEN

Osteoarthritis (OA) is a severe chronic inflammatory disease. As the main active component of Astragalus mongholicus Bunge, a classic traditional ethnic herb, calycosin exhibits anti-inflammatory action and its mechanism of exact targets for OA have yet to be determined. In this study, we established an anterior cruciate ligament transection (ACLT) mouse model. Mice were randomized to sham, OA, and calycosin groups. Cartilage synthesis markers type II collagen (Col-2) and SRY-Box Transcription Factor 9 (Sox-9) increased significantly after calycosin gavage. While cartilage matrix degradation index cyclooxygenase-2 (COX-2), phosphor-epidermal growth factor receptor (p-EGFR), and matrix metalloproteinase-9 (MMP9) expression were decreased. With the help of network pharmacology and molecular docking, these results were confirmed in chondrocyte ADTC5 cells. Our results indicated that the calycosin treatment significantly improved cartilage damage, this was probably attributed to reversing the imbalance between chondrocyte synthesis and catabolism.


Asunto(s)
Isoflavonas , Osteoartritis , Animales , Ratones , Condrocitos , Isoflavonas/farmacología , Simulación del Acoplamiento Molecular , Osteoartritis/tratamiento farmacológico
8.
Cancer Res ; 84(3): 405-418, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37963197

RESUMEN

Immunotherapies such as immune checkpoint blockade have achieved remarkable success in treating cancer. Unfortunately, response rates have been limited in multiple cancers including hepatocellular carcinoma (HCC). The critical function of epigenetics in tumor immune evasion and antitumor immunity supports harnessing epigenetic regulators as a potential strategy to enhance the efficacy of immunotherapy. Here, we discovered a tumor-promoting function of FTSJ3, an RNA 2'-O-methyltransferase, in HCC by suppressing antitumor immune responses. FTSJ3 was upregulated in hepatocellular carcinoma, and high FTSJ3 expression correlated with reduced patient survival. Deletion of FTSJ3 blocked HCC growth and induced robust antitumor immune responses. Mechanistically, FTSJ3 suppressed double-stranded RNA (dsRNA)-induced IFNß signaling in a 2'-O-methyltransferase manner. Deletion of RNA sensors in HCC cells or systemic knockout of type I IFN receptor IFNAR in mice rescued the in vivo tumor growth defect caused by FTSJ3 deficiency, indicating that FTSJ3 deletion suppresses tumor growth by activating the RNA sensor-mediated type I IFN pathway. Furthermore, FTSJ3 deletion significantly enhanced the efficacy of programmed cell death protein 1 (PD-1) immune checkpoint blockade. The combination of FTSJ3 deficiency and anti-PD-1 antibody treatment effectively eradicated tumors and increased the survival time. In conclusion, this study reveals an epigenetic mechanism of tumor immune evasion and, importantly, suggests FTSJ3-targeting therapies as potential approach to overcome immunotherapy resistance in patients with HCC. SIGNIFICANCE: Hepatocellular carcinoma cells use 2'-O-methylation catalyzed by FTSJ3 for immune evasion by suppressing abnormal dsRNA-mediated type I IFN responses, providing a potential target to activate antitumor immunity and enhance immunotherapy efficacy.


Asunto(s)
Carcinoma Hepatocelular , Interferón Tipo I , Neoplasias Hepáticas , Animales , Humanos , Ratones , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/patología , Inhibidores de Puntos de Control Inmunológico/farmacología , Evasión Inmune , Inmunoterapia , Interferón Tipo I/farmacología , Neoplasias Hepáticas/patología , Metiltransferasas/genética , ARN , Microambiente Tumoral
9.
CNS Neurosci Ther ; 30(3): e14231, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37183394

RESUMEN

INTRODUCTION: Spatial changes of amine metabolites and histopathology of the whole brain help to reveal the mechanism of traumatic brain injury (TBI) and treatment. METHODS: A newly developed liquid microjunction surface sampling-tandem mass tag-ultra performance liquid chromatography-mass spectrometry technique is applied to profile brain amine metabolites in five brain regions after impact-induced TBI at the subacute stage. H&E, Nissl, and immunofluorescence staining are performed to spatially correlate microscopical changes to metabolic alterations. Then, bioinformatics, molecular docking, ELISA, western blot, and immunofluorescence are integrated to uncover the mechanism of Xuefu Zhuyu decoction (XFZYD) against TBI. RESULTS: Besides the hippocampus and cortex, the thalamus, caudate-putamen, and fiber tracts also show differentiated metabolic changes between the Sham and TBI groups. Fourteen amine metabolites (including isomers such as L-leucine and L-isoleucine) are significantly altered in specific regions. The metabolic changes are well matched with the degree of neuronal damage, glia activation, and neurorestoration. XFZYD reverses the dysregulation of several amine metabolites, such as hippocampal Lys-Phe/Phe-Lys and dopamine. Also, XFZYD enhances post-TBI angiogenesis in the hippocampus and the thalamus. CONCLUSION: This study reveals the local amine-metabolite and histological changes in the subacute stage of TBI. XFZYD may promote TBI recovery by normalizing amine metabolites and spatially promoting dopamine production and angiogenesis.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Dopamina , Humanos , Simulación del Acoplamiento Molecular , Dopamina/metabolismo , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Metabolómica
10.
J Antimicrob Chemother ; 79(2): 383-390, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38134316

RESUMEN

BACKGROUND: SmeYZ is a constitutively expressed efflux pump in Stenotrophomonas maltophilia. Previous studies demonstrated that: (i) smeYZ inactivation causes compromised swimming, oxidative stress tolerance and aminoglycoside resistance; and (ii) the ΔsmeYZ-mediated pleiotropic defects, except aminoglycoside susceptibility, result from up-regulation of entSCEBB'FA and sbiAB operons, and decreased intracellular iron level. OBJECTIVES: To elucidate the modulatory role of SmeQ, a novel cytoplasmic protein, in ΔsmeYZ-mediated pleiotropic defects. METHODS: The presence of operons was verified using RT-PCR. The role of SmeQ in ΔsmeYZ-mediated pleiotropic defects was assessed using in-frame deletion mutants and functional assays. A bacterial adenylate cyclase two-hybrid assay was used to investigate the protein-protein interactions. Gene expression was quantified using quantitative RT-PCR (RT-qPCR). RESULTS: SmeYZ and the downstream smeQ formed an operon. SmeQ inactivation in the WT KJ decreased aminoglycoside resistance but did not affect swimming and tolerance to oxidative stress or iron depletion. However, smeQ inactivation in the smeYZ mutant rescued the ΔsmeYZ-mediated pleiotropic defects, except for aminoglycoside susceptibility. In the WT KJ, SmeQ positively modulated SmeYZ pump function by transcriptionally up-regulating the smeYZQ operon. Nevertheless, in the smeYZ mutant, SmeQ exerted its modulatory role by up-regulating entSCEBB'FA and sbiAB operons, decreasing intracellular iron levels, and causing ΔsmeYZ-mediated pleiotropic defects, except for aminoglycoside susceptibility. CONCLUSIONS: SmeQ is the first small protein identified to be involved in efflux pump function in S. maltophilia. It exerts modulatory effect by transcriptionally altering the expression of target genes, which are the smeYZQ operon in the WT KJ, and smeYZQ, entSCEBB'FA and sbiAB operons in smeYZ mutants.


Asunto(s)
Stenotrophomonas maltophilia , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Aminoglicósidos , Hierro/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pruebas de Sensibilidad Microbiana
11.
Cell Rep Med ; 4(12): 101315, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38091986

RESUMEN

Patients with hepatocellular carcinoma (HCC) at the same clinical stage can have extremely different prognoses, and molecular subtyping provides an opportunity for individualized precision treatment. In this study, genomic, transcriptomic, proteomic, and phosphoproteomic profiling of primary tumor tissues and paired para-tumor tissues from HCC patients (N = 160) are integrated. Proteomic profiling identifies three HCC subtypes with different clinical prognosis, which are validated in three publicly available external validation sets. A simplified panel of nine proteins associated with metabolic reprogramming is further identified as a potential subtype-specific biomarker for clinical application. Multi-omics analysis further reveals that three proteomic subtypes have significant differences in genetic alterations, microenvironment dysregulation, kinase-substrate regulatory networks, and therapeutic responses. Patient-derived cell-based drug tests (N = 26) show personalized responses for sorafenib in three proteomic subtypes, which can be predicted by a machine-learning response prediction model. Overall, this study provides a valuable resource for better understanding of HCC subtypes for precision clinical therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Proteómica , Multiómica , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Microambiente Tumoral/genética
12.
Nat Commun ; 14(1): 8392, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110372

RESUMEN

Early diagnosis of hepatocellular carcinoma (HCC) lacks highly sensitive and specific protein biomarkers. Here, we describe a staged mass spectrometry (MS)-based discovery-verification-validation proteomics workflow to explore serum proteomic biomarkers for HCC early diagnosis in 1002 individuals. Machine learning model determined as P4 panel (HABP2, CD163, AFP and PIVKA-II) clearly distinguish HCC from liver cirrhosis (LC, AUC 0.979, sensitivity 0.925, specificity 0.915) and healthy individuals (HC, AUC 0.992, sensitivity 0.975, specificity 1.000) in an independent validation cohort, outperforming existing clinical prediction strategies. Furthermore, the P4 panel can accurately predict LC to HCC conversion (AUC 0.890, sensitivity 0.909, specificity 0.877) with predicting HCC at a median of 11.4 months prior to imaging in prospective external validation cohorts (No.: Keshen 2018_005_02 and NCT03588442). These results suggest that proteomics-driven serum biomarker discovery provides a valuable reference for the liquid biopsy, and has great potential to improve early diagnosis of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/diagnóstico , Biomarcadores de Tumor , Proteómica , Estudios Prospectivos , alfa-Fetoproteínas/metabolismo , Biomarcadores , Detección Precoz del Cáncer/métodos
13.
Chin J Dent Res ; 26(4): 195-208, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38126366

RESUMEN

Dentine is a major component of teeth and is responsible for many of their functions, such as mastication and neural sensation/transduction. Over the past decades, numerous studies have focused on dentine development and regeneration using a variety of research models, including in vivo, ex vivo and in vitro models. In vivo animal models play a crucial role in the exploration of biochemical factors that are involved in dentine development, whereas ex vivo and in vitro models contribute mainly to the identification of biophysical factors in dentine regeneration, of which mechanical force is most critical. In the present review, research models involved in studies related to dentine development and regeneration were screened from publications released in recent years and summarised comprehensively, particularly in vivo animal models including prokaryotic microinjection, Cre/LoxP, CRISPR/Cas9, ZFN and TALEN, and scaffold-based in vitro and ex vivo models. The latter were further divided by the interactive forces. Summarising these research models will not only benefit the development of future dentine-related studies but also provide hints regarding the evolution of novel dentine regeneration strategies.


Asunto(s)
Dentina , Diente , Animales , Dentina/fisiología , Regeneración
14.
Chin Med ; 18(1): 150, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957754

RESUMEN

BACKGROUND: In this study, we aimed to combine transcriptomic and network pharmacology to explore the crucial mRNAs and specific regulatory molecules of Buyang Huanwu Decoction (BYHWD) in intracerebral hemorrhage (ICH) treatment. METHODS: C57BL/6 mice were randomly divided into three groups: sham, ICH, and BYHWD. BYHWD (43.29 g/kg) was administered once a day for 7 days. An equal volume of double-distilled water was used as a control. Behavioural and histopathological experiments were conducted to confirm the neuroprotective effects of BYHWD. Brain tissues were collected for transcriptomic detection. Bioinformatics analysis were performed to illustrate the target gene functions. Network pharmacology was used to predict potential targets for BYHWD. Next, transcriptomic assays were combined with network pharmacology to identify the potential differentially expressed mRNAs. Immunofluorescence staining, real-time polymerase chain reaction, western blotting, and transmission electron microscopy were performed to elucidate the underlying mechanisms. RESULTS: BYHWD intervention in ICH reduced neurological deficits. Network pharmacology analysis identified 203 potential therapeutic targets for ICH, whereas transcriptomic assay revealed 109 differentially expressed mRNAs post-ICH. Among these, cathepsin B, ATP binding cassette subfamily B member 1, toll-like receptor 4, chemokine (C-C motif) ligand 12, and baculoviral IAP repeat-containing 5 were identified as potential target mRNAs through the integration of transcriptomics and network pharmacology approaches. Bioinformatics analysis suggested that the beneficial effects of BYHWD in ICH may be associated with apoptosis, animal autophagy signal pathways, and PI3K-Akt and mTOR biological processes. Furthermore, BYHWD intervention decreased Ctsb expression levels and increased autophagy levels in ICH. CONCLUSIONS: Animal experiments in combination with bioinformatics analysis confirmed that BYHWD plays a neuroprotective role in ICH by regulating Ctsb to enhance autophagy.

15.
Phytomedicine ; 121: 155086, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37783132

RESUMEN

BACKGROUND: Astragaloside IV (AS-IV) is the main active component of "Astragalus membranaceus (Fisch.) Bunge, a synonym of Astragalus propinquus Schischkin (Fabaceae)", which demonstrated to be useful for the treatment of intracerebral hemorrhage (ICH). However, due to the low bioavailability and barrier permeability of AS-IV, the gut microbiota may be an important key regulator for AS-IV to work. OBJECTIVE: To explore the influences of gut microbiota on the effects of AS-IV on ICH. METHODS: Mice were randomly divided into five groups: sham, ICH, and AS-IV-treated groups (25 mg/kg, 50 mg/kg, and 100 mg/kg). Behavioral tests, brain histopathology, and immunohistochemistry analysis were used to evaluate the degree of brain injury. Western blot was employed to verify peri­hematoma inflammation. The plasma lipopolysaccharide (LPS) leakage, the fluorescein isothiocyanate-dextran permeability, the colonic histopathology, and immunohistochemistry were detected to evaluate the barrier function of intestinal mucosal. Moreover, 16S rDNA sequencing and metabolomic analysis was applied to screen differential bacteria and metabolites, respectively. The correlation analysis was adopted to determine the potential relationship between differential bacteria and critical metabolites or neurological deficits. RESULTS: AS-IV alleviated neurological deficits, neuronal injury and apoptosis, and blood-brain barrier disruption. This compound reduced tumor necrosis factor (TNF)-α expression, increased arginase (Arg)-1 and interleukin (IL)-33 levels around the hematoma. Next, 16S rRNA sequencing indicated that AS-IV altered the gut microbiota, and inhibited the production of conditional pathogenic bacteria. Metabolomic analysis demonstrated that AS-IV regulated the serum metabolic profiles, especially the aminoacid metabolism and peroxisome proliferator-activated receptor (PPAR) signaling pathway. Additionally, AS-IV mitigated intestinal barrier damage and LPS leakage. CONCLUSION: This study provides a new perspective on the use of AS-IV for the treatment of ICH. Among them, gut microbiota and its metabolites may be the key regulator of AS-IV in treating ICH.


Asunto(s)
Microbioma Gastrointestinal , Lipopolisacáridos , Ratones , Animales , Lipopolisacáridos/farmacología , ARN Ribosómico 16S , Hemorragia Cerebral/tratamiento farmacológico , Bacterias , Hematoma
16.
Food Funct ; 14(20): 9407-9418, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37795525

RESUMEN

Sarcopenia, characterized by muscle loss, negatively affects the elderly's physical activity and survival. Enhancing protein and polyphenol intake, possibly through the supplementation of fermented black soybean koji product (BSKP), may alleviate sarcopenia by addressing anabolic deficiencies and gut microbiota dysbiosis because of high contents of polyphenols and protein in BSKP. This study aimed to examine the effects of long-term supplementation with BSKP on mitigating sarcopenia in the elderly and the underlying mechanisms. BSKP was given to 46 participants over 65 years old with early sarcopenia daily for 10 weeks. The participants' physical condition, serum biochemistry, inflammatory cytokines, antioxidant activities, microbiota composition, and metabolites in feces were evaluated both before and after the intervention period. BSKP supplementation significantly increased the appendicular skeletal muscle mass index and decreased the low-density lipoprotein level. BSKP did not significantly alter the levels of inflammatory factors, but significantly increased the activity of antioxidant enzymes. BSKP changed the beta diversity of gut microbiota and enhanced the relative abundance of Ruminococcaceae_UCG_013, Lactobacillus_murinus, Algibacter, Bacillus, Gordonibacter, Porphyromonas, and Prevotella_6. Moreover, BSKP decreased the abundance of Akkermansia and increased the fecal levels of butyric acid. Positive correlations were observed between the relative abundance of BSKP-enriched bacteria and the levels of serum antioxidant enzymes and fecal short chain fatty acids (SCFAs), and Gordonibacter correlated negatively with serum low-density lipoprotein. In summary, BSKP attenuated age-related sarcopenia by inducing antioxidant enzymes and SCFAs via gut microbiota regulation. Therefore, BSKP holds potential as a high-quality nutrient source for Taiwan's elderly, especially in conditions such as sarcopenia.


Asunto(s)
Microbioma Gastrointestinal , Sarcopenia , Humanos , Anciano , Microbioma Gastrointestinal/fisiología , Sarcopenia/prevención & control , Proteínas de Plantas , Polifenoles , Antioxidantes , Vida Independiente , Taiwán , Músculo Esquelético/metabolismo , Ácidos Grasos Volátiles/metabolismo , Lipoproteínas LDL , Suplementos Dietéticos
17.
Ying Yong Sheng Tai Xue Bao ; 34(6): 1669-1679, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37694430

RESUMEN

Yanhe River is one of the important tributaries of the Yellow River, with a vital role in the maintenance of biodiversity and ecological conservation in the middle reaches of the Yellow River. In this study, we conducted a systematic aquatic ecological survey of the Yanhe River Basin in spring (April-May) and autumn (September-October) of 2021, with phytoplankton as indicator organism. A total of 33 sampling sections were selected in the mainstem, five first-class tributaries, and impounded water bodies (reservoir and check dam water bodies) of the Yanhe River Basin. The results showed that a total of 253 phytoplankton species, belonging to 7 phyla and 91 genera, were detected in the two surveys. Diatoms and green algae prevailed in spring (168 species), while diatoms and cyanobacteria dominated in autumn (179 species). The mean phytoplankton density and biomass were 316.07×104 cells·L-1 and 6.41 mg·L-1 in spring, and 69.56×104 cells·L-1 and 1.59 mg·L-1 in autumn, respectively. At the temporal scale, phytoplankton abundance in spring was higher than that in autumn. At the spatial scale, the phytoplankton abundance in the middle and lower reaches of the mainstream was higher than that in the upper reaches. Phytoplankton biomass in the impounded water bodies formed by dam interception was maintained at a high level, which was significantly higher than that in the mainstem and tributary water bodies in autumn. The phytoplankton diversity, as indicated by Shannon diversity index, Margalef richness index, and Pielou evenness index, in spring was greater than that in autumn. Phytoplankton diversity was greater in the trunk and tributary waters than that in impounded waters. The results of redundancy analysis showed that the key factors driving the phytoplankton community structure in spring were flow velocity, dissolved oxygen, nitrite nitrogen, and water depth. In contrast, the key driving factors in autumn were nitrate nitrogen, water depth, and dissolved oxygen.


Asunto(s)
Diatomeas , Fitoplancton , Ríos , China , Nitrógeno , Oxígeno
18.
Pharm Biol ; 61(1): 1054-1064, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37416997

RESUMEN

CONTEXT: Hydroxysafflor yellow A (HSYA) is the main bioactive ingredient of safflower (Carthamus tinctorius L., [Asteraceae]) for traumatic brain injury (TBI) treatment. OBJECTIVE: To explore the therapeutic effects and underlying mechanisms of HSYA on post-TBI neurogenesis and axon regeneration. MATERIALS AND METHODS: Male Sprague-Dawley rats were randomly assigned into Sham, controlled cortex impact (CCI), and HSYA groups. Firstly, the modified Neurologic Severity Score (mNSS), foot fault test, hematoxylin-eosin staining, Nissl's staining, and immunofluorescence of Tau1 and doublecortin (DCX) were used to evaluate the effects of HSYA on TBI at the 14th day. Next, the effectors of HSYA on post-TBI neurogenesis and axon regeneration were screened out by pathology-specialized network pharmacology and untargeted metabolomics. Then, the core effectors were validated by immunofluorescence. RESULTS: HSYA alleviated mNSS, foot fault rate, inflammatory cell infiltration, and Nissl's body loss. Moreover, HSYA increased not only hippocampal DCX but also cortical Tau1 and DCX following TBI. Metabolomics demonstrated that HSYA significantly regulated hippocampal and cortical metabolites enriched in 'arginine metabolism' and 'phenylalanine, tyrosine and tryptophan metabolism' including l-phenylalanine, ornithine, l-(+)-citrulline and argininosuccinic acid. Network pharmacology suggested that neurotrophic factor (BDNF) and signal transducer and activator of transcription 3 (STAT3) were the core nodes in the HSYA-TBI-neurogenesis and axon regeneration network. In addition, BDNF and growth-associated protein 43 (GAP43) were significantly elevated following HSYA treatment in the cortex and hippocampus. DISCUSSION AND CONCLUSIONS: HSYA may promote TBI recovery by facilitating neurogenesis and axon regeneration through regulating cortical and hippocampal metabolism, BDNF and STAT3/GAP43 axis.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Chalcona , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Factor Neurotrófico Derivado del Encéfalo , Axones , Regeneración Nerviosa , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Quinonas/farmacología , Chalcona/farmacología , Metabolómica
19.
Microbiol Spectr ; 11(4): e0108023, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37284772

RESUMEN

Outer membrane protein A (OmpA) is the most abundant porin in bacterial outer membranes. KJΔOmpA299-356, an ompA C-terminal in-frame deletion mutant of Stenotrophomonas maltophilia KJ, exhibits pleiotropic defects, including decreased tolerance to menadione (MD)-mediated oxidative stress. Here, we elucidated the underlying mechanism of the decreased MD tolerance mediated by ΔompA299-356. The transcriptomes of wild-type S. maltophilia and the KJΔOmpA299-356 mutant strain were compared, focusing on 27 genes known to be associated with oxidative stress alleviation; however, no significant differences were identified. OmpO was the most downregulated gene in KJΔOmpA299-356. KJΔOmpA299-356 complementation with the chromosomally integrated ompO gene restored MD tolerance to the wild-type level, indicating the role of OmpO in MD tolerance. To further clarify the possible regulatory circuit involved in ompA defects and ompO downregulation, σ factor expression levels were examined based on the transcriptome results. The expression levels of three σ factors were significantly different (downregulated levels of rpoN and upregulated levels of rpoP and rpoE) in KJΔOmpA299-356. Next, the involvement of the three σ factors in the ΔompA299-356-mediated decrease in MD tolerance was evaluated using mutant strains and complementation assays. rpoN downregulation and rpoE upregulation contributed to the ΔompA299-356-mediated decrease in MD tolerance. OmpA C-terminal domain loss induced an envelope stress response. Activated σE decreased rpoN and ompO expression levels, in turn decreasing swimming motility and oxidative stress tolerance. Finally, we revealed both the ΔompA299-356-rpoE-ompO regulatory circuit and rpoE-rpoN cross regulation. IMPORTANCE The cell envelope is a morphological hallmark of Gram-negative bacteria. It consists of an inner membrane, a peptidoglycan layer, and an outer membrane. OmpA, an outer membrane protein, is characterized by an N-terminal ß-barrel domain that is embedded in the outer membrane and a C-terminal globular domain that is suspended in the periplasmic space and connected to the peptidoglycan layer. OmpA is crucial for the maintenance of envelope integrity. Stress resulting from the destruction of envelope integrity is sensed by extracytoplasmic function (ECF) σ factors, which induce responses to various stressors. In this study, we revealed that loss of the OmpA-peptidoglycan (PG) interaction causes peptidoglycan and envelope stress while simultaneously upregulating σP and σE expression levels. The outcomes of σP and σE activation are different and are linked to ß-lactam and oxidative stress tolerance, respectively. These findings establish that outer membrane proteins (OMPs) play a critical role in envelope integrity and stress tolerance.


Asunto(s)
Stenotrophomonas maltophilia , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/metabolismo , Regulón , Peptidoglicano/metabolismo , Factor sigma/metabolismo , Estrés Oxidativo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
20.
Front Mol Neurosci ; 16: 1166875, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187956

RESUMEN

Background: Intracerebral hemorrhage (ICH) is a severe subtype of stroke lacking effective pharmacological targets. Long noncoding RNA (lncRNA) has been confirmed to participate in the pathophysiological progress of various neurological disorders. However, how lncRNA affects ICH outcomes in the acute phase is not completely clear. In this study, we aimed to reveal the relationship of lncRNA-miRNA-mRNA following ICH. Method: We conducted the autologous blood injection ICH model and extracted total RNAs on day 7. Microarray scanning was used to obtain mRNA and lncRNA profiles, which were validated by RT-qPCR. GO/KEGG analysis of differentially expressed mRNAs was performed using the Metascape platform. We calculated the Pearson correlation coefficients (PCCs) of lncRNA-mRNA for co-expression network construction. A competitive endogenous (Ce-RNA) network was established based on DIANALncBase and miRDB database. Finally, the Ce-RNA network was visualized and analyzed by Cytoscape. Results: In total, 570 differentially expressed mRNAs and 313 differentially expressed lncRNAs were identified (FC ≥ 2 and value of p <0.05). The function of differentially expressed mRNAs was mainly enriched in immune response, inflammation, apoptosis, ferroptosis, and other typical pathways. The lncRNA-mRNA co-expression network contained 57 nodes (21 lncRNAs and 36 mRNAs) and 38 lncRNA-mRNA pairs. The ce-RNA network was generated with 303 nodes (29 lncRNAs, 163 mRNAs, and 111 miRNAs) and 906 edges. Three hub clusters were selected to indicate the most significant lncRNA-miRNA-mRNA interactions. Conclusion: Our study suggests that the top differentially expressed RNA molecules may be the biomarker of acute ICH. Furthermore, the hub lncRNA-mRNA pairs and lncRNA-miRNA-mRNA correlations may provide new clues for ICH treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...