Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Kaohsiung J Med Sci ; 40(2): 119-130, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38305705

RESUMEN

Alzheimer's disease (AD) is a progressively debilitating neurodegenerative condition primarily affecting the elderly. Emerging research suggests that microRNAs (miRNAs) play a role in the development of AD. This study investigates the impact of miR-107-5p on neurological damage, oxidative stress, and immune responses in AD. We utilized APP/PS1 mice as AD mouse models and C57BL/6 J mice as controls. AD mice received treatment with agomir miR-107-5p (to overexpress miR-107-5p) or BAY11-7082 (an NF-κB pathway inhibitor). We evaluated learning and memory abilities through the Morris water maze test. Histopathological changes, hippocampal neuron distribution, and apoptosis were assessed using hematoxylin-eosin, Nissl, and TUNEL staining. Reactive oxygen species (ROS) levels, amyloid-Aß (Aß1-40/42) contents, and inflammatory factors (TNF-α, IL-6, IL-1ß) in hippocampal tissues were measured using ROS kits and enzyme-linked immunosorbent assay (ELISA). Microglial activation in hippocampal tissues was observed under a fluorescence microscope. miR-107-5p's binding to TLR4 was predicted via the TargetScan database and confirmed through a dual-luciferase assay. miR-107-5p expression, along with TLR4, APOE, and TREM2 in hippocampal tissue homogenate, and NF-κB p65 protein expression in the nucleus and cytoplasm were assessed via RT-qPCR and Western blot. Overexpression of miR-107-5p ameliorated hippocampal neurological damage, oxidative stress, and immune responses. This was evidenced by improved enhanced learning/memory abilities, reduced Aß1-40 and Aß1-42 levels, diminished neuronal injuries, decreased ROS and TNF-α, IL-6, and IL-1ß levels, increased APOE and TREM2 levels, and suppressed microglial activation. miR-107-5p directly targeted and inhibited TLR4 expression, leading to reduced nuclear translocation of NF-κB p65 in the NF-κB pathway. Inhibition of the NF-κB pathway similarly improved neurological damage, oxidative stress, and immune response in AD mice. miR-107-5p exerts its beneficial effects by suppressing the TLR4/NF-κB pathway, ultimately ameliorating neurological damage, oxidative stress, and immune responses in AD mice.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Apolipoproteínas E/metabolismo , Inmunidad , Interleucina-6/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Estrés Oxidativo/genética , Especies Reactivas de Oxígeno , Transducción de Señal/genética , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...