Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38606539

RESUMEN

The Phyllanthaceae family comprises a diverse range of plants with medicinal, edible, and ornamental value, extensively cultivated worldwide. Polyploid species commonly occur in Phyllanthaceae. Due to the rather complex genomes and evolutionary histories, their speciation process has been still lacking in research. In this study, we generated chromosome-scale haplotype-resolved genomes of two octoploid species (Phyllanthus emblica and Sauropus spatulifolius) in Phyllanthaceae family. Combined with our previously reported one tetraploid (Sauropus androgynus) and one diploid species (Phyllanthus cochinchinensis) from the same family, we explored their speciation history. The three polyploid species were all identified as allopolyploids with subgenome A/B. Each of their two distinct subgenome groups from various species was uncovered to independently share a common diploid ancestor (Ancestor-AA and Ancestor-BB). Via different evolutionary routes, comprising various scenarios of bifurcating divergence, allopolyploidization (hybrid polyploidization), and autopolyploidization, they finally evolved to the current tetraploid S. androgynus, and octoploid S. spatulifolius and P. emblica, respectively. We further discuss the variations in copy number of alleles and the potential impacts within the two octoploids. In addition, we also investigated the fluctuation of metabolites with medical values and identified the key factor in its biosynthesis process in octoploids species. Our study reconstructed the evolutionary history of these Phyllanthaceae species, highlighting the critical roles of polyploidization and hybridization in their speciation processes. The high-quality genomes of the two octoploid species provide valuable genomic resources for further research of evolution and functional genomics.

2.
Rice (N Y) ; 17(1): 27, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607544

RESUMEN

Cultivating rice varieties with robust blast resistance is the most effective and economical way to manage the rice blast disease. However, rice blast disease comprises leaf and panicle blast, which are different in terms of resistance mechanisms. While many blast resistant rice cultivars were bred using genes conferring resistance to only leaf or panicle blast, mining durable and effective quantitative trait loci (QTLs) for both panicle and leaf blast resistance is of paramount importance. In this study, we conducted a pangenome-wide association study (panGWAS) on 9 blast resistance related phenotypes using 414 international diverse rice accessions from an international rice panel. This approach led to the identification of 74 QTLs associated with rice blast resistance. One notable locus, qPBR1, validated in a F4:5 population and fine-mapped in a Heterogeneous Inbred Family (HIF), exhibited broad-spectrum, major and durable blast resistance throughout the growth period. Furthermore, we performed transcriptomic analysis of 3 resistant and 3 sensitive accessions at different time points after infection, revealing 3,311 differentially expressed genes (DEGs) potentially involved in blast resistance. Integration of the above results identified 6 candidate genes within the qPBR1 locus, with no significant negative effect on yield. The results of this study provide valuable germplasm resources, QTLs, blast response genes and candidate functional genes for developing rice varieties with enduring and broad-spectrum blast resistance. The qPBR1, in particular, holds significant potential for breeding new rice varieties with comprehensive and durable resistance throughout their growth period.

3.
Genome Biol Evol ; 16(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38669452

RESUMEN

A pangenome captures the genomic diversity for a species, derived from a collection of genetic sequences of diverse populations. Advances in sequencing technologies have given rise to three primary methods for pangenome construction and analysis: de novo assembly and comparison, reference genome-based iterative assembly, and graph-based pangenome construction. Each method presents advantages and challenges in processing varying amounts and structures of DNA sequencing data. With the emergence of high-quality genome assemblies and advanced bioinformatic tools, the graph-based pangenome is emerging as an advanced reference for exploring the biological and functional implications of genetic variations.


Asunto(s)
Genoma de Planta , Genómica/métodos , Plantas/genética , Análisis de Secuencia de ADN/métodos , Variación Genética , Biología Computacional/métodos
4.
Rice (N Y) ; 17(1): 21, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526756

RESUMEN

Strong seedling vigor is imperative to achieve stable seedling establishment and enhance the competitiveness against weeds in rice direct seeding. Shoot length (SL) is one of the important traits associated with seedling vigor in rice, but few genes for SL have been cloned so far. In the previous study, we identified two tightly linked and stably expressed QTLs for SL, qSL-1f and qSL-1d by genome-wide association study, and cloned the causal gene (LOC_Os01g68500) underlying qSL-1f. In the present study, we identify LOC_Os01g66100 (i.e. the semidwarf gene SD1), a well-known gene controlling plant height (PH) at the adult-plant stage, as the causal gene underlying qSL-1d through gene-based haplotype analysis and knockout transgenic verification. By measuring the phenotypes (SL and PH) of various haplotypes of the two genes and their knockout lines, we found SD1 and LOC_ Os01g68500 controlled both SL and PH, and worked in the same direction, which provided the directly genetic evidence for a positive correlation between SL and PH combined with the analysis of SL and PH in the diverse natural population. Moreover, the knockout transgenic experiments suggested that SD1 had a greater effect on PH compared with LOC_ Os01g68500, but no significant difference in the effect on SL. Further investigation of the pyramiding effects of SD1 and LOC_Os01g68500 based on their haplotype combinations suggested that SD1 may play a dominant role in controlling SL and PH when the two genes coexist. In this study, the effect of SD1 on SL at the seedling stage is validated. In total, two causal genes, SD1 and LOC_ Os01g68500, for SL are cloned in our studies, which controlled both SL and PH, and the suitable haplotypes of SD1 and LOC_ Os01g68500 are beneficial to achieve the desired SL and PH in different rice breeding objectives. These results provide a new clue to develop rice varieties for direct seeding and provide new genetic resources for molecular breeding of rice with suitable PH and strong seedling vigor.

5.
Plant Biotechnol J ; 22(3): 544-554, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37961986

RESUMEN

Inversions, a type of chromosomal structural variation, significantly influence plant adaptation and gene functions by impacting gene expression and recombination rates. However, compared with other structural variations, their roles in functional biology and crop improvement remain largely unexplored. In this review, we highlight technological and methodological advancements that have allowed a comprehensive understanding of inversion variants through the pangenome framework and machine learning algorithms. Genome editing is an efficient method for inducing or reversing inversion mutations in plants, providing an effective mechanism to modify local recombination rates. Given the potential of inversions in crop breeding, we anticipate increasing attention on inversions from the scientific community in future research and breeding applications.


Asunto(s)
Edición Génica , Fitomejoramiento , Fitomejoramiento/métodos , Edición Génica/métodos , Plantas/genética , Inversión Cromosómica/genética , Genoma de Planta/genética
6.
Appl Opt ; 62(30): 8098-8103, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-38038105

RESUMEN

To address the deformation issues caused by the self-gravity and machining stresses in the process of large-aperture mirror fabrication, this paper proposes an in-situ switchable pneumatic-hydraulic hybrid supporting system that enables the seamless transition between machining and testing. By facilitating in-situ switching, this system not only reduces the machining time of large-aperture mirrors, thereby enhancing production efficiency, but also mitigates the risks associated with traditional switching methods that may result in mirror damage due to human error. Three typical working conditions of the hybrid supporting system, namely hydraulic machining support, air-floating testing support, and three-point rigid support, are investigated in terms of mirror loading through a finite element simulation. Additionally, an experimental platform is constructed to validate the proposed system. The experimental results affirm the feasibility of the designed pneumatic-hydraulic hybrid supporting system. This system will serve as a technological support to advance the rapid development of large-aperture space telescope manufacturing techniques.

7.
Theor Appl Genet ; 136(12): 251, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985474

RESUMEN

KEY MESSAGE: Genome-wide association mapping revealed a novel QTL for shoot length across multiple environments. Its causal gene, LOC_Os01g68500, was identified firstly through gene-based haplotype analysis, gene expression and knockout transgenic verification. Strong seedling vigor is an important breeding target for rice varieties used in direct seeding. Shoot length (SL) is one of the important traits associated with seedling vigor characterized by rapid growth of seedling, which enhance seedling emergence. Therefore, mining genes for SL and conducting molecular breeding help to develop varieties for direct seeding. However, few QTLs for SL have been fine mapped or cloned so far. In this study, a genome-wide association study of SL was performed in a diverse rice collection consisting of 391 accessions in two years, using phenotypes generated by different cultivation methods according to the production practice, and a total of twenty-four QTLs for SL were identified. Among them, the novel QTL qSL-1f on chromosome 1 could be stably detected across all three cultivation methods in the whole population and indica subpopulation. Through gene-based haplotype analysis of the annotated genes within the putative region of qSL-1f, and validated by gene expression and knockout transgenic experiments, LOC_Os01g68500 (i.e., Os01g0913100 in RAP-DB) was identified as the causal gene for SL, which has a single-base variation (C-to-A transversion) in its CDS region, resulting in the significant difference in SL of rice. LOC_Os01g68500 encodes a DUF538 (Domain of unknown function) containing protein, and the function of DUF538 protein gene on rice seedling growth is firstly reported in this study. These results provide a new clue for exploring the molecular mechanism regulating SL, and promising gene source for the molecular breeding in rice.


Asunto(s)
Oryza , Oryza/genética , Estudio de Asociación del Genoma Completo , Haplotipos , Fitomejoramiento , Mapeo Cromosómico/métodos , Plantones/genética
8.
Plant Phenomics ; 5: 0097, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780968

RESUMEN

Nutrient-efficient root system architecture (RSA) is becoming an important breeding objective for generating crop varieties with improved nutrient and water acquisition efficiency. Genetic variants shaping soybean RSA is key in improving nutrient and water acquisition. Here, we report on the use of an improved 2-dimensional high-throughput root phenotyping platform that minimizes background noise by imaging pouch-grown root systems submerged in water. We also developed a background image cleaning Python pipeline that computationally removes images of small pieces of debris and filter paper fibers, which can be erroneously quantified as root tips. This platform was used to phenotype root traits in 286 soybean lines genotyped with 5.4 million single-nucleotide polymorphisms. There was a substantially higher correlation in manually counted number of root tips with computationally quantified root tips (95% correlation), when the background was cleaned of nonroot materials compared to root images without the background corrected (79%). Improvements in our RSA phenotyping pipeline significantly reduced overestimation of the root traits influenced by the number of root tips. Genome-wide association studies conducted on the root phenotypic data and quantitative gene expression analysis of candidate genes resulted in the identification of 3 putative positive regulators of root system depth, total root length and surface area, and root system volume and surface area of thicker roots (DOF1-like zinc finger transcription factor, protein of unknown function, and C2H2 zinc finger protein). We also identified a putative negative regulator (gibberellin 20 oxidase 3) of the total number of lateral roots.

9.
Sci Data ; 10(1): 535, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563167

RESUMEN

Wild barley, from "Evolution Canyon (EC)" in Mount Carmel, Israel, are ideal models for cereal chromosome evolution studies. Here, the wild barley EC_S1 is from the south slope with higher daily temperatures and drought, while EC_N1 is from the north slope with a cooler climate and higher relative humidity, which results in a differentiated selection due to contrasting environments. We assembled a 5.03 Gb genome with contig N50 of 3.53 Mb for wild barley EC_S1 and a 5.05 Gb genome with contig N50 of 3.45 Mb for EC_N1 using 145 Gb and 160.0 Gb Illumina sequencing data, 295.6 Gb and 285.35 Gb Nanopore sequencing data and 555.1 Gb and 514.5 Gb Hi-C sequencing data, respectively. BUSCOs and CEGMA evaluation suggested highly complete assemblies. Using full-length transcriptome data, we predicted 39,179 and 38,373 high-confidence genes in EC_S1 and EC_N1, in which 93.6% and 95.2% were functionally annotated, respectively. We annotated repetitive elements and non-coding RNAs. These two wild barley genome assemblies will provide a rich gene pool for domesticated barley.


Asunto(s)
Genoma de Planta , Hordeum , Cromosomas , Hordeum/genética , Anotación de Secuencia Molecular , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos
11.
Front Plant Sci ; 14: 1147946, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025151

RESUMEN

Yellowhorn (Xanthoceras sorbifolia) is a species of deciduous tree that is native to Northern and Central China, including Loess Plateau. The yellowhorn tree is a hardy plant, tolerating a wide range of growing conditions, and is often grown for ornamental purposes in parks, gardens, and other landscaped areas. The seeds of yellowhorn are edible and contain rich oil and fatty acid contents, making it an ideal plant for oil production. However, the mechanism of its ability to adapt to extreme environments and the genetic basis of oil synthesis remains to be elucidated. In this study, we reported a high-quality and near gap-less yellowhorn genome assembly, containing the highest genome continuity with a contig N50 of 32.5 Mb. Comparative genomics analysis showed that 1,237 and 231 gene families under expansion and the yellowhorn-specific gene family NB-ARC were enriched in photosynthesis and root cap development, which may contribute to the environmental adaption and abiotic stress resistance of yellowhorn. A 3-ketoacyl-CoA thiolase (KAT) gene (Xso_LG02_00600) was identified under positive selection, which may be associated with variations of seed oil content among different yellowhorn cultivars. This study provided insights into environmental adaptation and seed oil content variations of yellowhorn to accelerate its genetic improvement.

12.
Hortic Res ; 10(3): uhad005, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36938565

RESUMEN

Rhodomyrtus tomentosa is an important fleshy-fruited tree and a well-known medicinal plant of the Myrtaceae family that is widely cultivated in tropical and subtropical areas of the world. However, studies on the evolution and genomic breeding of R. tomentosa were hindered by the lack of a reference genome. Here, we presented a chromosome-level gap-free T2T genome assembly of R. tomentosa using PacBio and ONT long read sequencing. We assembled the genome with size of 470.35 Mb and contig N50 of ~43.80 Mb with 11 pseudochromosomes. A total of 33 382 genes and 239.31 Mb of repetitive sequences were annotated in this genome. Phylogenetic analysis elucidated the independent evolution of R. tomentosa starting from 14.37MYA and shared a recent WGD event with other Myrtaceae species. We identified four major compounds of anthocyanins and their synthetic pathways in R. tomentosa. Comparative genomic and gene expression analysis suggested the coloring and high anthocyanin accumulation in R. tomentosa tends to be determined by the activation of anthocyanin synthesis pathway. The positive selection and up-regulation of MYB transcription factors were the implicit factors in this process. The copy number increase of downstream anthocyanin transport-related OMT and GST gene were also detected in R. tomentosa. Expression analysis and pathway identification enriched the importance of starch degradation, response to stimuli, effect of hormones, and cell wall metabolism during the fleshy fruit development in Myrtaceae. Our genome assembly provided a foundation for investigating the origins and differentiation of Myrtaceae species and accelerated the genetic improvement of R. tomentosa.

13.
BMC Biol ; 21(1): 25, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36747211

RESUMEN

BACKGROUND: Gene duplication is a prevalent phenomenon and a major driving force underlying genome evolution. The process leading to the fixation of gene duplicates following duplication is critical to understand how genome evolves but remains fragmentally understood. Most previous studies on gene retention are based on gene duplicate analyses in single reference genome. No population-based comparative gene retention analysis has been performed to date. RESULTS: Taking advantage of recently published genomic data in Triticeae, we dissected a divergent homogentisate phytyltransferase (HPT2) lineage caught in the middle stage of gene fixation following duplication. The presence/absence of HPT2 in barley (diploid), wild emmer (tetraploid), and bread wheat (hexaploid) pangenome lines appears to be associated with gene dosage constraint and environmental adaption. Based on these observations, we adopted a phylogeny-based orthology inference approach and performed comparative gene retention analyses across barley, wild emmer, and bread wheat. This led to the identification of 326 HPT2-pattern-like genes at whole genome scale, representing a pool of gene duplicates in the middle stage of gene fixation. Majority of these HPT2-pattern-like genes were identified as small-scale duplicates, such as dispersed, tandem, and proximal duplications. Natural selection analyses showed that HPT2-pattern-like genes have experienced relaxed selection pressure, which is generally accompanied with partial positive selection and transcriptional divergence. Functional enrichment analyses showed that HPT2-pattern-like genes are over-represented with molecular-binding and defense response functions, supporting the potential role of environmental adaption during gene retention. We also observed that gene duplicates from larger gene family are more likely to be lost, implying a gene dosage constraint effect. Further comparative gene retention analysis in barley and bread wheat pangenome lines revealed combined effects of species-specific selection and gene dosage constraint. CONCLUSIONS: Comparative gene retention analyses at the population level support gene dosage constraint, environmental adaption, and species-specific selection as three factors that may affect gene retention following gene duplication. Our findings shed light on the evolutionary process leading to the retention of newly formed gene duplicates and will greatly improve our understanding on genome evolution via duplication.


Asunto(s)
Duplicación de Gen , Hordeum , Triticum/genética , Hordeum/genética , Pan , Familia de Multigenes , Evolución Molecular , Filogenia
14.
Genome Biol ; 24(1): 19, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36703158

RESUMEN

BACKGROUND: A pangenome aims to capture the complete genetic diversity within a species and reduce bias in genetic analysis inherent in using a single reference genome. However, the current linear format of most plant pangenomes limits the presentation of position information for novel sequences. Graph pangenomes have been developed to overcome this limitation. However, bioinformatics analysis tools for graph format genomes are lacking. RESULTS: To overcome this problem, we develop a novel strategy for pangenome construction and a downstream pangenome analysis pipeline (PSVCP) that captures genetic variants' position information while maintaining a linearized layout. Using PSVCP, we construct a high-quality rice pangenome using 12 representative rice genomes and analyze an international rice panel with 413 diverse accessions using the pangenome as the reference. We show that PSVCP successfully identifies causal structural variations for rice grain weight and plant height. Our results provide insights into rice population structure and genomic diversity. We characterize a new locus (qPH8-1) associated with plant height on chromosome 8 undetected by the SNP-based genome-wide association study (GWAS). CONCLUSIONS: Our results demonstrate that the pangenome constructed by our pipeline combined with a presence and absence variation-based GWAS can provide additional power for genomic and genetic analysis. The pangenome constructed in this study and the associated genome sequence and genetic variants data provide valuable genomic resources for rice genomics research and improvement in future.


Asunto(s)
Oryza , Oryza/genética , Estudio de Asociación del Genoma Completo , Genómica/métodos , Genoma , Biología Computacional
15.
Plant Biotechnol J ; 21(1): 46-62, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36054248

RESUMEN

Divergent selection of populations in contrasting environments leads to functional genomic divergence. However, the genomic architecture underlying heterogeneous genomic differentiation remains poorly understood. Here, we de novo assembled two high-quality wild barley (Hordeum spontaneum K. Koch) genomes and examined genomic differentiation and gene expression patterns under abiotic stress in two populations. These two populations had a shared ancestry and originated in close geographic proximity but experienced different selective pressures due to their contrasting micro-environments. We identified structural variants that may have played significant roles in affecting genes potentially associated with well-differentiated phenotypes such as flowering time and drought response between two wild barley genomes. Among them, a 29-bp insertion into the promoter region formed a cis-regulatory element in the HvWRKY45 gene, which may contribute to enhanced tolerance to drought. A single SNP mutation in the promoter region may influence HvCO5 expression and be putatively linked to local flowering time adaptation. We also revealed significant genomic differentiation between the two populations with ongoing gene flow. Our results indicate that SNPs and small SVs link to genetic differentiation at the gene level through local adaptation and are maintained through divergent selection. In contrast, large chromosome inversions may have shaped the heterogeneous pattern of genomic differentiation along the chromosomes by suppressing chromosome recombination and gene flow. Our research offers novel insights into the genomic basis underlying local adaptation and provides valuable resources for the genetic improvement of cultivated barley.


Asunto(s)
Hordeum , Hordeum/genética , Genómica , Adaptación Fisiológica/genética , Genes de Plantas
16.
Plant Physiol Biochem ; 188: 47-59, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35981439

RESUMEN

Extreme weather events have become more frequent, increasing crop yield fluctuations in many regions and thus the risk to global food security. Breeding crop cultivars with improved tolerance to a combination of abiotic stresses is an effective solution to counter the adverse impact of climate change. The ever-increasing genomic data and analytical tools provide unprecedented opportunities to mine genes with tolerance to multiple abiotic stresses through bioinformatics analysis. We undertook an integrated meta-analysis using 260 transcriptome data of barley related to drought, salt, heat, cold, and waterlogging stresses. A total of 223 shared differentially expressed genes (DEGs) were identified in response to five abiotic stresses, and significantly enriched in 'glutathione metabolism' and 'monoterpenoid biosynthesis' pathways. Using weighted gene co-expression network analysis (WGCNA), we further identified 15 hub genes (e.g., MYB, WRKY, NADH, and GST4) and selected the GST4 gene for functional validation. HvGST4 overexpression in Arabidopsis thaliana enhanced the tolerance to multiple abiotic stresses, likely through increasing the content of glutathione to scavenge reactive oxygen species and alleviate cell membrane peroxidation. Furthermore, we showed that virus-induced gene silencing (VIGS) of HvGST4 in barley leaves exacerbated cell membrane peroxidation under five abiotic stresses, reducing tolerance to multiple abiotic stress. Our study provides a new solution for identifying genes with tolerance to multiple abiotic stresses based on meta-analysis, which could contribute to breeding new varieties adapted genetically to adverse environmental conditions.


Asunto(s)
Arabidopsis , Hordeum , Arabidopsis/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Glutatión , Hordeum/genética , Fitomejoramiento , Estrés Fisiológico/genética
17.
Materials (Basel) ; 15(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35806686

RESUMEN

Three-dimensional printing, also called additive manufacturing (AM), offers a new vision for optical components in terms of weight reduction and strength improvement. A truss, which is a triangulated system of members that are structured and connected in such a way that they mainly bear axial force, is commonly used in steel structures to improve stiffness and reduce weight. Combining these two technologies, an extremely lightweight truss-structured mirror was proposed. First, the finite element analyses (FEA) on surface shape deviation and modal properties were carried out. Results showed that the mirrors had sufficient stiffness and a high weight reduction of up to 85%. In order to verify their performance, the truss-structured mirror blanks were fabricated with AM technology. After that, both the preprocessing and the postprocessing of the mirrors were carried out. The results show that without NiP coating, a surface shape deviation of 0.353λ (PV) and 0.028 λ (RMS) (λ = 632.8 nm) with a roughness of Ra 2.8 nm, could be achieved. Therefore, the truss-structured mirrors in this study have the characteristics of being extremely lightweight and having improved stiffness as well as strong temperature stability.

18.
Plant Genome ; 15(3): e20221, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35644986

RESUMEN

Bread wheat (Triticum aestivum L.) is one of humanity's most important staple crops, characterized by a large and complex genome with a high level of gene presence-absence variation (PAV) between cultivars, hampering genomic approaches for crop improvement. With the growing global population and the increasing impact of climate change on crop yield, there is an urgent need to apply genomic approaches to accelerate wheat breeding. With recent advances in DNA sequencing technology, a growing number of high-quality reference genomes are becoming available, reflecting the genetic content of a diverse range of cultivars. However, information on the presence or absence of genomic regions has been hard to visualize and interrogate because of the size of these genomes and the lack of suitable bioinformatics tools. To address this limitation, we have produced a wheat pangenome graph maintained within an online database to facilitate interrogation and comparison of wheat cultivar genomes. The database allows users to visualize regions of the pangenome to assess PAV between bread wheat genomes.


Graph pangenomes represent more genomic variants than reference genomes. We present a wheat graph pangenome based on 16 public assemblies. We present Wheat Panache, an online visual representation of this graph. Wheat Panache lets users search the graph for presence-absence variants. We also distribute the graph preindexed for Giraffe utilization.


Asunto(s)
Pan , Triticum , Genoma de Planta , Fitomejoramiento , Análisis de Secuencia de ADN , Triticum/genética
19.
BMC Plant Biol ; 22(1): 180, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35395721

RESUMEN

Recent growth in crop genomic and trait data have opened opportunities for the application of novel approaches to accelerate crop improvement. Machine learning and deep learning are at the forefront of prediction-based data analysis. However, few approaches for genotype to phenotype prediction compare machine learning with deep learning and further interpret the models that support the predictions. This study uses genome wide molecular markers and traits across 1110 soybean individuals to develop accurate prediction models. For 13/14 sets of predictions, XGBoost or random forest outperformed deep learning models in prediction performance. Top ranked SNPs by F-score were identified from XGBoost, and with further investigation found overlap with significantly associated loci identified from GWAS and previous literature. Feature importance rankings were used to reduce marker input by up to 90%, and subsequent models maintained or improved their prediction performance. These findings support interpretable machine learning as an approach for genomic based prediction of traits in soybean and other crops.


Asunto(s)
Aprendizaje Profundo , Glycine max , Genotipo , Aprendizaje Automático , Fenotipo , Glycine max/genética
20.
Theor Appl Genet ; 135(4): 1443-1455, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35141762

RESUMEN

KEY MESSAGE: The major soy protein QTL, cqProt-003, was analysed for haplotype diversity and global distribution, and results indicate 304 bp deletion and variable tandem repeats in protein coding regions are likely causal candidates. Here, we present association and linkage analysis of 985 wild, landrace and cultivar soybean accessions in a pan genomic dataset to characterize the major high-protein/low-oil associated locus cqProt-003 located on chromosome 20. A significant trait-associated region within a 173 kb linkage block was identified, and variants in the region were characterized, identifying 34 high confidence SNPs, 4 insertions, 1 deletion and a larger 304 bp structural variant in the high-protein haplotype. Trinucleotide tandem repeats of variable length present in the second exon of gene Glyma.20G085100 are strongly correlated with the high-protein phenotype and likely represent causal variation. Structural variation has previously been found in the same gene, for which we report the global distribution of the 304 bp deletion and have identified additional nested variation present in high-protein individuals. Mapping variation at the cqProt-003 locus across demographic groups suggests that the high-protein haplotype is common in wild accessions (94.7%), rare in landraces (10.6%) and near absent in cultivated breeding pools (4.1%), suggesting its decrease in frequency primarily correlates with domestication and continued during subsequent improvement. However, the variation that has persisted in under-utilized wild and landrace populations holds high breeding potential for breeders willing to forego seed oil to maximize protein content. The results of this study include the identification of distinct haplotype structures within the high-protein population, and a broad characterization of the genomic context and linkage patterns of cqProt-003 across global populations, supporting future functional characterization and modification.


Asunto(s)
Fabaceae , Glycine max , Fabaceae/genética , Haplotipos , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Semillas/metabolismo , Glycine max/genética , Glycine max/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...