Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39063003

RESUMEN

Pepper is an economically important vegetable worldwide, containing various specialized metabolites crucial for its development and flavor. Capsaicinoids, especially, are genus-specialized metabolites that confer a spicy flavor to Capsicum fruits. In this work, two pepper cultivars, YB (Capsicum frutescens L.) and JC (Capsicum baccatum L.) pepper, showed distinct differences in the accumulation of capsaicin and flavonoid. However, the molecular mechanism underlying them was still unclear. Metabolome analysis showed that the JC pepper induced a more abundant accumulation of metabolites associated with alkaloids, flavonoids, and capsaicinoids in the red ripening stages, leading to a spicier flavor in the JC pepper. Transcriptome analysis confirmed that the increased expression of transcripts associated with phenylpropanoid and flavonoid metabolic pathways occurred in the JC pepper. Integrative analysis of metabolome and transcriptome suggested that four structural genes, 4CL7, 4CL6, CHS, and COMT, were responsible for the higher accumulation of metabolites relevant to capsaicin and flavonoids. Through weighted gene co-expression network analyses, modules related to flavonoid biosynthesis and potential regulators for candidate genes were identified. The promoter analysis of four candidate genes showed they contained several cis-elements that were bonded to MYB, bZIP, and WRKY transcription factors. Further RT-qPCR examination verified three transcription factors, MYB, bZIP53, and WRKY25, that exhibited increased expression in the red ripening stage of the JC pepper compared to YB, which potentially regulated their expression. Altogether, our findings provide comprehensive understanding and valuable information for pepper breeding programs in the future.


Asunto(s)
Capsaicina , Capsicum , Flavonoides , Frutas , Regulación de la Expresión Génica de las Plantas , Metaboloma , Transcriptoma , Flavonoides/metabolismo , Flavonoides/biosíntesis , Capsaicina/metabolismo , Capsicum/genética , Capsicum/metabolismo , Capsicum/crecimiento & desarrollo , Frutas/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Front Plant Sci ; 14: 1108552, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035074

RESUMEN

Viruses deploy numerous strategies to infect plants, typically by forming complexes with another virus, leading to more efficient infection. However, the detailed plant responses to viral infection and the underlying mechanisms of co-infection remain unclear. Previously, we found that tomato spotted wilt orthotospovirus (TSWV) and Hippeastrum chlorotic ringspot orthotospovirus (HCRV) could infect plants in the field by forming a complex. In this study, we found that TSWV infected tobacco (Nicotiana benthamiana) plants in cooperation with HCRV, leading to a more efficient infection rate of both viruses. We then used the in-depth full-length transcriptome to analyze the responses of N. benthamiana to complex infection by TSWV-HCRV (TH). We found that infection with individual TSWV and HCRV triggered plant defense responses, including the jasmonic acid signaling pathway, autophagy, and secondary metabolism. However, TH co-infection could not trigger and even suppress some genes that are involved in these basal resistance responses, suggesting that co-infection is advantageous for the virus and not for the plants. Typically, the TH complex inhibits NbPR1 expression to suppress tobacco resistance. Moreover, the TH complex could alter the expression of microRNAs (miRNAs), especially novel-m0782-3p and miR1992-3p, which directly interact with NbSAM and NbWRKY6 and suppress their expression in tobacco, leading to downregulation of NbPR1 and loss of resistance in tobacco to TSWV and HCRV viruses. Overall, our results elucidated the co-infection mechanisms of TH in tobacco by deploying the miRNA of plants to suppress plant basal resistance and contributed to developing a novel strategy to control crop disease caused by this virus complex.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA