Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Carbohydr Polym ; 329: 121787, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38286554

RESUMEN

The stem support for fresh-cut flowers exerts a profound influence on the display of their blossoms. During vase insertion, bending stems significantly affect the ornamental value, but much remains unclear about the underlying reasons. In this study, six pairs of ornamental plants were screened for the contrast of bending and straight stems. The bending stems have weakened mechanical force and biomass recalcitrance compared with the straight ones. Meanwhile, cells in the bending stems became more loosely packed, along with a decrease in cell wall thickness and cellulose levels. Furthermore, wall properties characterizations show bending stems have decreased lignocellulosic CrI and cellulose DP, and enhanced the branching ratio of hemicellulose which is trapped in the cellulose. Given the distinct cell wall factors in different species, all data are grouped in standardized to eliminate the variations among plant species. The principal composition analysis and correlation analysis of the processed dataset strongly suggest that cellulose association factors determine the stem mechanical force and recalcitrance. Based on our results, we propose a model for how branches of confined hemicellulose interacted with cellulose to modulate stem strength support for the straight or bending phenotype in cut flowers.


Asunto(s)
Celulosa , Xilanos , Celulosa/análisis , Xilanos/análisis , Plantas , Pared Celular/química , Flores , Tallos de la Planta
2.
Nat Commun ; 14(1): 1100, 2023 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841862

RESUMEN

Plant cellulose microfibrils are increasingly employed to produce functional nanofibers and nanocrystals for biomaterials, but their catalytic formation and conversion mechanisms remain elusive. Here, we characterize length-reduced cellulose nanofibers assembly in situ accounting for the high density of amorphous cellulose regions in the natural rice fragile culm 16 (Osfc16) mutant defective in cellulose biosynthesis using both classic and advanced atomic force microscopy (AFM) techniques equipped with a single-molecular recognition system. By employing individual types of cellulases, we observe efficient enzymatic catalysis modes in the mutant, due to amorphous and inner-broken cellulose chains elevated as breakpoints for initiating and completing cellulose hydrolyses into higher-yield fermentable sugars. Furthermore, effective chemical catalysis mode is examined in vitro for cellulose nanofibers conversion into nanocrystals with reduced dimensions. Our study addresses how plant cellulose substrates are digestible and convertible, revealing a strategy for precise engineering of cellulose substrates toward cost-effective biofuels and high-quality bioproducts.


Asunto(s)
Celulosa , Nanofibras , Celulosa/química , Nanofibras/química , Microscopía de Fuerza Atómica , Azúcares , Pared Celular
3.
Int J Mol Sci ; 23(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35805929

RESUMEN

Panose is a type of functional sugar with diverse bioactivities. The enzymatic conversion bioprocess to produce high purity panose with high efficiency has become increasingly important. Here, a new neopullulanase (NPase), Amy117 from B. pseudofirmus 703, was identified and characterized. Amy117 presented the optimal activity at pH 7.0 and 30 °C, its activity is over 40% at 10 °C and over 80% at 20 °C, which is cold-active. The enzyme cleaved α-1, 4-glycosidic linkages of pullulan to generate panose as the only hydrolysis product, and degraded cyclodextrins (CDs) and starch to glucose and maltose, with an apparent preference for CDs. Furthermore, Amy117 can produce 72.7 mg/mL panose with a conversion yield of 91% (w/w) based on 80 mg/mL pullulan. The sequence and structure analysis showed that the low proportion of Arg, high proportion of Asn and Gln, and high α-helix levels in Amy117 may contribute to its cold-active properties. Root mean square deviation (RMSD) analysis also showed that Amy117 is more flexible than two mesophilic homologues. Hence, we discovered a new high-efficiency panose-producing NPase, which so far achieves the highest panose production and would be an ideal candidate in the food industry.


Asunto(s)
Ciclodextrinas , Glicósido Hidrolasas , Ciclodextrinas/metabolismo , Glucanos , Glicósido Hidrolasas/metabolismo , Especificidad por Sustrato
4.
J Cardiothorac Surg ; 16(1): 271, 2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34565415

RESUMEN

BACKGROUND: We investigated single-port video-assisted thoracoscopic surgery (VATS) combined with a postoperative non-indwelling drain in enhanced recovery after surgery (ERAS). METHODS: The clinical data of 127 patients who underwent double- and single-port VATS from January 2018 to December 2019 were analyzed retrospectively. The groups constituted 71 cases undergoing double-port and 56 cases undergoing single-port VATS (30 cases in the indwelling drain group and 26 cases in the non-indwelling drain group). The incidence of postoperative complications, pain scores, and postoperative hospital stay were compared between the two groups. RESULTS: Compared with the double-port group, the single-port group had shorter postoperative hospital stays and lower pain scores on the first and third postoperative days (P < 0.05). Pain scores on the first and third days were lower in the single-port non-indwelling drain group than in the single-port indwelling drain group (P < 0.05), and the postoperative hospitalization time was significantly shorter in the single-port group (P < 0.05). However, there was no significant difference between the two groups for operation time, incidence of complications, and pain scores 1 month after operation (P > 0.05). CONCLUSIONS: The combination of single-port VATS with a non-indwelling drain can relieve postoperative pain, help patients recover quickly, and is in accordance with ERAS.


Asunto(s)
Recuperación Mejorada Después de la Cirugía , Cirugía Torácica Asistida por Video , Drenaje , Humanos , Dolor Postoperatorio/epidemiología , Dolor Postoperatorio/etiología , Estudios Retrospectivos
5.
Front Plant Sci ; 12: 663536, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489988

RESUMEN

The plant mediator is a highly conserved protein complex that interacts with transcription factors (TFs) and RNA polymerase II (RNAP II) to relay regulatory information during transcription. Plant immune response is one of the biological processes that is orchestrated by this regulatory mechanism. Brassica napus, an important oil crop, is severely attacked by a devastating disease Sclerotinia stem rot. Here, we explored broad-spectrum disease resistant roles of B. napus mediator subunit 16 (BnMED16) and its host defense mechanism against fugal pathogen Sclerotinia sclerotiorum. We found that BnMED16 expression was significantly increased by S. sclerotiorum infection, and its homologous overexpression resulted in rapid and comprehensive defense responses from the beginning to the end. This affected signal transduction with multiple channels including pathogen recognition, intracellular Ca2+ concentration, reactive oxygen species (ROS) accumulation and clearance, and activation of mitogen-activated protein kinase (MAPK) signaling cascades initially. Subsequently, pathogen-/defense-related genes and hormone-responsive pathways were highly activated, which resulted in enhanced cell wall and secretion of defense proteases. Furthermore, the biochemical analysis showed that BnMED16 interacts with BnMED25 and BnWRKY33. Additionally, BnMED25 also interacts with TFs BnMYC2, BnCOI1, and BnEIN3 of the JA/ET signal transduction pathway. Taken together, we proposed a hypothetical model that BnMED16 confers S. sclerotiorum resistance by enhancing BnMED25-mediated JA/ET defense pathways and BnWRKY33-activated defense signaling in B. napus. The BnMED16 overexpressing lines with enhanced broad-spectrum disease resistance could be useful for breeding Sclerotinia-resistant oilseed rape varieties, as well as serving as basis for further strategy development in resistance breeding.

6.
J Exp Bot ; 71(10): 2956-2969, 2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32064495

RESUMEN

UDP-glucose epimerases (UGEs) are essential enzymes for catalysing the conversion of UDP-glucose (UDP-Glc) into UDP-galactose (UDP-Gal). Although UDP-Gal has been well studied as the substrate for the biosynthesis of carbohydrates, glycolipids, and glycoproteins, much remains unknown about the biological function of UGEs in plants. In this study, we selected a novel rice fragile culm 24 (Osfc24) mutant and identified it as a nonsense mutation of the FC24/OsUGE2 gene. The Osfc24 mutant shows a brittleness phenotype with significantly altered cell wall composition and disrupted orientation of the cellulose microfibrils. We found significantly reduced accumulation of arabinogalactan proteins in the cell walls of the mutant, which may consequently affect plant growth and cell wall deposition, and be responsible for the altered cellulose microfibril orientation. The mutant exhibits dwarfism and paler leaves with significantly decreased contents of galactolipids and chlorophyll, resulting in defects in plant photosynthesis. Based on our results, we propose a model for how OsUGE2 participates in two distinct metabolic pathways to co-modulate cellulose biosynthesis and cell wall assembly by dynamically providing UDP-Gal and UDP-Glc substrates.


Asunto(s)
Oryza , UDPglucosa 4-Epimerasa , Pared Celular/metabolismo , Glucosa/metabolismo , Oryza/genética , Oryza/metabolismo , Fotosíntesis , UDPglucosa 4-Epimerasa/genética , UDPglucosa 4-Epimerasa/metabolismo , Uridina Difosfato/metabolismo
7.
Plant Mol Biol ; 101(4-5): 389-401, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31432304

RESUMEN

KEY MESSAGE: Overexpression of cotton cellulose synthase like D3 (GhCSLD3) gene partially rescued growth defect of atcesa6 mutant with restored cell elongation and cell wall integrity mainly by enhancing primary cellulose production. Among cellulose synthase like (CSL) family proteins, CSLDs share the highest sequence similarity to cellulose synthase (CESA) proteins. Although CSLD proteins have been implicated to participate in the synthesis of carbohydrate-based polymers (cellulose, pectins and hemicelluloses), and therefore plant cell wall formation, the exact biochemical function of CSLD proteins remains controversial and the function of the remaining CSLD genes in other species have not been determined. In this study, we attempted to illustrate the function of CSLD proteins by overexpressing Arabidopsis AtCSLD2, -3, -5 and cotton GhCSLD3 genes in the atcesa6 mutant, which has a background that is defective for primary cell wall cellulose synthesis in Arabidopsis. We found that GhCSLD3 overexpression partially rescued the growth defect of the atcesa6 mutant during early vegetative growth. Despite the atceas6 mutant having significantly reduced cellulose contents, the defected cell walls and lower dry mass, GhCSLD3 overexpression largely restored cell wall integrity (CWI) and improved the biomass yield. Our result suggests that overexpression of the GhCSLD protein enhances primary cell wall synthesis and compensates for the loss of CESAs, which is required for cellulose production, therefore rescuing defects in cell elongation and CWI.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Gossypium/genética , Proteínas de Plantas/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Pared Celular/metabolismo , Celulosa/biosíntesis , Celulosa/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo
8.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 37(1): 25-30, 2019 Feb 01.
Artículo en Chino | MEDLINE | ID: mdl-30854814

RESUMEN

OBJECTIVE: This study aims to establish an effective and stable periodontal ligament cell line stably expressing human telomerase reverse transcriptase (hTERT) gene by using the adenovirus method. METHODS: Polymerase chain reaction (PCR) was used to amplify the full length of hTERT gene to construct recombinant adenovirus plasmid pAd-pshuttle-cmv-hTERT. Packaged adenovirus particles were used for infection of human periodontal ligament cells. The expression levels of hTERT and osteogenic genes, such as alkaline phosphatase, Runt-related transcription factor 2, bone sialoprotein, osteocalcin, osteopontin, and collagen Ⅰ mRNA, were detected by quantitative real-time PCR (qRT-PCR). The ability of osteogenic differentiation was observed by alizarin red staining, and the cell proliferation was determined by CCK-8. RESULTS: Adenovirus particles containing the hTERT gene were successfully constructed and infected with periodontal ligament cells. The infected cells were similar to normal periodontal ligament cells. The qRT-PCR results showed that hTERT and osteogenesis-associated genes were highly expressed in the periodontal ligament cell lines constructed by adenoviruses. Alizarin red staining showed that the periodontal ligament cell line had strong osteogenic differentiation capability. CCK-8 showed that the periodontal ligament cell line had strong proliferation capability. CONCLUSIONS: The human periodontal ligament cell line with high efficiency and stable expression of hTERT was established by the adenovirus method, thereby providing an ideal cell line for studying the mechanism of periodontal regeneration.


Asunto(s)
Ligamento Periodontal , Telomerasa , Adenoviridae , Fosfatasa Alcalina , Diferenciación Celular , Línea Celular , Proliferación Celular , Humanos , Osteogénesis
9.
Int J Biol Macromol ; 118(Pt A): 1284-1292, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29949749

RESUMEN

The crops and grains were often contaminated by high level of mycotoxin zearalenone (ZEN). In order to remove ZEN and keep food safe, ZEN-degrading or detoxifying enzymes are urgently needed. Here, a newly identified lactonohydrolase responsible for the detoxification of ZEN, annotated as Zhd518, was expressed and characterized. Zhd518 showed 65% amino acid identity with Zhd101, which was widely studied for its ZEN-degrading ability. A detailed activity measurement method of ZEN-degrading enzyme was provided. Biochemical analysis indicated that the purified recombinant Zhd518 from E. coli exhibited a high activity against ZEN (207.0 U/mg), with the optimal temperature and pH of 40 °C and 8.0, respectively. The Zhd518 can degrade ZEN derivatives, and the specific activities against α-Zearalenol, ß-Zearalenol, α-Zearalanol and ß-Zearalanol were 23.0 U/mg, 64.7 U/mg, 119.8 U/mg and 66.5 U/mg, respectively. The active sites of Zhd518 were predicted by structure modeling and determined by mutation analysis. A point mutant N156H exhibited 3.3-fold activity against α-Zearalenol comparing to Zhd518. Zhd518 is the first reported neutral and the second characterized ZEN-degrading enzyme, which provides a new and more excellent candidate for ZEN detoxifying in food and feed industry.


Asunto(s)
Proteínas Fúngicas/química , Gliocladium/enzimología , Hidrolasas/química , Mutación Missense , Zearalenona/química , Sustitución de Aminoácidos , Dominio Catalítico , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Hidrolasas/biosíntesis , Hidrolasas/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
10.
Chemistry ; 24(39): 9869-9876, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29766584

RESUMEN

Aflatoxin B1 (AFB1 ), one of the most toxic mycotoxins, is classified as a group I carcinogen and ubiquitous in various foods and agriproducts. Thus, accurate and sensitive determination of AFB1 is of great significance to meet the criteria of food safety. Direct detection of AFB1 is difficult by monoclonal antibody (mAb) with large molecular size (≈150 kD) since the target is too small to produce a detectable signal change. Herein, by combining the electrochemical properties of nanomaterials and the advantages of nanobodies, we developed a direct, highly selective and sensitive electrochemical immunosensor for small molecule detection. The proposed immunosensor had a wide calibration range of 0.01 to 100 ng mL-1 and a low detection limit of 3.3 pg mL-1 (S/N=3). Compared with the immunosensor prepared with mAb which was applied in the typical indirect immunoassay, the immunosensor in this work possessed two orders of magnitudes wider linear range and 10-fold more sensitivity. The as-obtained immunosensor was further successfully applied for sensing AFB1 in real samples. This proposed assay would provide a simple, highly sensitive and selective approach for the direct immunoassay of small molecule AFB1 , and is extendable to the development of direct immunosensing systems for other small molecules detection by coupling nanocarbon and nanobody.


Asunto(s)
Aflatoxina B1/química , Anticuerpos Monoclonales/química , Inmunoensayo , Técnicas Biosensibles , Técnicas Electroquímicas , Límite de Detección
11.
Carbohydr Polym ; 192: 273-281, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29691021

RESUMEN

Miscanthus is a leading bioenergy crop and rice provides enormous biomass for biofuels. Using Calcofluor White staining, this work in situ observed an initial lignocellulose hydrolysis in two distinct Miscanthus accessions, rice cultivar (NPB), and Osfc16 mutant after mild chemical pretreatments. In comparison, the M. sin and Osfc16 respectively exhibited weak Calcofluor fluorescence compared to the M. sac and NPB during enzymatic hydrolysis, consistent with the high biomass saccharification detected in vitro. Using xyloglucan-directed monoclonal antibodies (mAbs), xyloglucan deconstruction was observed from initial cellulose hydrolysis, whereas the M. sin and Osfc16 exhibited relatively strong immunolabeling using xylan-directed mAb, confirming previous findings of xylan positive impacts on biomass saccharification. Furthermore, the M. sin showed quick disappearance of RG-I immunolabeling with varied HG labelings between acid and alkali pretreatments. Hence, this study demonstrated a quick approach to explore wall polymer distinct deconstruction for enhanced biomass saccharification under chemical pretreatment in bioenergy crops.


Asunto(s)
Biomasa , Biopolímeros/metabolismo , Pared Celular/metabolismo , Oryza/citología , Oryza/efectos de los fármacos , Poaceae/citología , Poaceae/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Pared Celular/efectos de los fármacos , Celulosa/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis/efectos de los fármacos , Hidróxidos/farmacología , Oryza/metabolismo , Poaceae/metabolismo , Compuestos de Potasio/farmacología
12.
Plant Cell Physiol ; 59(6): 1144-1157, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29514326

RESUMEN

Cellulose is the most characteristic component of plant cell walls, and plays a central role in plant mechanical strength and morphogenesis. Despite the fact that cellulose synthase (CesA) mutants exhibit a reduction in cellulose level, much remains unknown about their impacts on cell growth (elongation and division) and cell wall integrity that fundamentally determine plant growth. Here, we examined three major types of AtCesA mutants (rsw1, an AtCesA1 mutant; prc1-1 and cesa6, AtCesA6-null mutants; and IRX3, an AtCesA7 mutant) and transgenic mutants that overexpressed AtCesA genes in the background of AtCesA6-null mutants. We found that AtCesA6-null mutants showed a reduced cell elongation of young seedlings with little impact on cell division, which consequently affected cell wall integrity and biomass yield of mature plants. In comparison, rsw1 seedlings exhibited a strong defect in both cell elongation and division at restrictive temperature, whereas the IRX3 mutant showed normal seedling growth. Analyses of transgenic mutants indicated that primary wall AtCesA2, AtCesA3, AtCesA5 and AtCesA9 genes played a partial role in restoration of seedling growth. However, co-overexpression of AtCesA2 and AtCesA5 in AtCesA6-null mutants could greatly enhance cell division and fully restore wall integrity, leading to a significant increase in secondary wall thickness and biomass production in mature plants. Hence, this study has demonstrated distinct functions of AtCesA genes in plant cell growth and cell wall deposition for biomass production, which helps to expalin our recent finding that only three AtCesA6-like genes, rather than other AtCesA genes of the AtCesA family, could greatly enhance biomass production in transgenic Arabidopsis plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Glucosiltransferasas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Biomasa , División Celular , Aumento de la Célula , Pared Celular/metabolismo , Celulosa/metabolismo , Glucosiltransferasas/metabolismo , Plantones/enzimología , Plantones/genética , Plantones/crecimiento & desarrollo
13.
Plant Biotechnol J ; 16(5): 976-988, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28944540

RESUMEN

Cellulose is an abundant biopolymer and a prominent constituent of plant cell walls. Cellulose is also a central component to plant morphogenesis and contributes the bulk of a plant's biomass. While cellulose synthase (CesA) genes were identified over two decades ago, genetic manipulation of this family to enhance cellulose production has remained difficult. In this study, we show that increasing the expression levels of the three primary cell wall AtCesA6-like genes (AtCesA2, AtCesA5, AtCesA6), but not AtCesA3, AtCesA9 or secondary cell wall AtCesA7, can promote the expression of major primary wall CesA genes to accelerate primary wall CesA complex (cellulose synthase complexes, CSCs) particle movement for acquiring long microfibrils and consequently increasing cellulose production in Arabidopsis transgenic lines, as compared with wild-type. The overexpression transgenic lines displayed changes in expression of genes related to cell growth and proliferation, perhaps explaining the enhanced growth of the transgenic seedlings. Notably, overexpression of the three AtCesA6-like genes also enhanced secondary cell wall deposition that led to improved mechanical strength and higher biomass production in transgenic mature plants. Hence, we propose that overexpression of certain AtCesA genes can provide a biotechnological approach to increase cellulose synthesis and biomass accumulation in transgenic plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Celulosa/metabolismo , Glucosiltransferasas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Biomasa , Pared Celular/enzimología , Expresión Génica , Glucosiltransferasas/genética , Plantas Modificadas Genéticamente , Plantones/enzimología , Plantones/genética , Plantones/crecimiento & desarrollo
14.
Plant Biotechnol J ; 16(1): 254-263, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28574641

RESUMEN

Plant lodging resistance is an important integrative agronomic trait of grain yield and quality in crops. Although extensin proteins are tightly associated with plant cell growth and cell wall construction, little has yet been reported about their impacts on plant lodging resistance. In this study, we isolated a novel extensin-like (OsEXTL) gene in rice, and selected transgenic rice plants that expressed OsEXTL under driven with two distinct promoters. Despite different OsEXTL expression levels, two-promoter-driven OsEXTL-transgenic plants, compared to a rice cultivar and an empty vector, exhibited significantly reduced cell elongation in stem internodes, leading to relatively shorter plant heights by 7%-10%. Meanwhile, the OsEXTL-transgenic plants showed remarkably thickened secondary cell walls with higher cellulose levels in the mature plants, resulting in significantly increased detectable mechanical strength (extension and pushing forces) in the mature transgenic plants. Due to reduced plant height and increased plant mechanical strength, the OsEXTL-transgenic plants were detected with largely enhanced lodging resistances in 3 years field experiments, compared to those of the rice cultivar ZH11. In addition, despite relatively short plant heights, the OsEXTL-transgenic plants maintain normal grain yields and biomass production, owing to their increased cellulose levels and thickened cell walls. Hence, this study demonstrates a largely improved lodging resistance in the OsEXTL-transgenic rice plants, and provides insights into novel extensin functions in plant cell growth and development, cell wall network construction and wall structural remodelling.


Asunto(s)
Pared Celular/metabolismo , Oryza/metabolismo , Tallos de la Planta/metabolismo , Pared Celular/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Oryza/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tallos de la Planta/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
15.
J Exp Bot ; 69(5): 1065-1080, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29253184

RESUMEN

CSLD3, a gene of the cellulose synthase-like D family, affects root hair elongation, but its interactions with ethylene signaling and phosphate-starvation are poorly understood. Here, we aim to understand the role of CSLD3 in the context of the ethylene signaling and phosphate starvation pathways in Arabidopsis plant growth. Therefore, we performed a comparative analysis of the csld3-1 mutant, CSLD3-overexpressing lines, and ethylene-response mutants, such as the constitutive ethylene-response mutant i-ctr1. We found that CSLD3 overexpression enhanced root and hypocotyl growth by increasing cell elongation, and that the root growth was highly sensitive to ethylene treatment (1 µM ACC), in particular under phosphate starvation. However, the CSLD3-mediated hypocotyl elongation occurred independently of the ethylene signaling pathway. Notably, the typical induction of root hair and root elongation by ethylene and phosphate-starvation was completely abolished in the csld3-1 mutant. Furthermore, i-ctr1 csld3-1 double-mutants were hairless like the csld3-1 parent, confirming that CSLD3 acts downstream of the ethylene signaling pathway during root growth. Moreover, the CSLD3 levels positively correlated with cellulose levels, indicating a role of CSLD3 in cellulose synthesis, which may explain the observed growth effects. Our results establish how CSLD3 works in the context of the ethylene signaling and phosphate-starvation pathways during root hair growth, cell elongation, and cell wall biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Etilenos/metabolismo , Gossypium/genética , Fosfatos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Aumento de la Célula , Gossypium/metabolismo , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Transducción de Señal
17.
Exp Biol Med (Maywood) ; 242(7): 709-717, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28299977

RESUMEN

This study aimed to screen lymphatic metastasis-related microRNAs (miRNAs) in lung adenocarcinoma and explore their underlying mechanisms using bioinformatics. The miRNA expression in primary lung adenocarcinoma, matched adjacent non-tumorigenic and lymph node metastasis tissues of patients were profiled via microarray. The screened metastasis-related miRNAs were then validated using quantitative real-time PCR in a second cohort of lung adenocarcinoma patients with lymphatic metastasis. Significance was determined using a paired t-test. Target genes of the metastasis-related miRNAs were predicted using TargetScan, and transcription factors (TFs) were predicted based on the TRANSFAC and ENCODE databases. Furthermore, the related long non-coding RNAs (lncRNAs) were screened with starBase v2.0. The miRNA-TF-mRNA and lncRNA-miRNA-mRNA networks were constructed to determine the key interactions associated with lung adenocarcinoma metastasis. According to the miRNA microarray results, there were 10 miRNAs that were differentially expressed in metastatic tissues compared with primary tumor and adjacent non-tumorigenic tissues. Among them were increased levels of miR-146a-5p, miR-342-3p, and miR-150-5p, which were validated in the second cohort. Based on the miRNA-TF-mRNA network, vascular endothelial growth factor A and transcription factors (TFs) including TP53, SMAD4, and EP300 were recognized as critical targets of the three miRNAs. Interactions involving SNHG16-miR-146a-5p-SMAD4 and RP6-24A23.7-miR-342-3p/miR-150-5p-EP300 were highlighted according to the lncRNA-miRNA-mRNA network. miR-146a-5p, miR-342-3p, and miR-150-5p are lymphatic metastasis-related miRNAs in lung adenocarcinoma. Bioinformatics analyses demonstrated that SNHG16 might inhibit the interaction between miR-146a-5p and SMAD4, while RP6-24A23.7 might weaken miR-342-3p-EP300 and miR-150-5p-EP300 interactions in metastasis.


Asunto(s)
Adenocarcinoma/metabolismo , Neoplasias Pulmonares/metabolismo , MicroARNs/fisiología , Adenocarcinoma/patología , Estudios de Casos y Controles , Biología Computacional/métodos , Femenino , Humanos , Neoplasias Pulmonares/patología , Metástasis Linfática , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Neoplásico/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
PLoS One ; 12(2): e0172470, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28231299

RESUMEN

The present study was aimed to unravel the inhibitory mechanisms of curcumin for lung cancer metastasis via constructing a miRNA-transcription factor (TF)-target gene network. Differentially expressed miRNAs between human high-metastatic non-small cell lung cancer 95D cells treated with and without curcumin were identified using a TaqMan human miRNA array followed by real-time PCR, out of which, the top 6 miRNAs (miR-302b-3p, miR-335-5p, miR-338-3p, miR-34c-5p, miR-29c-3p and miR-34a-35p) with more verified target genes and TFs than other miRNAs as confirmed by a literature review were selected for further analysis. The miRecords database was utilized to predict the target genes of these 6 miRNAs, TFs of which were identified based on the TRANSFAC database. The findings of the above procedure were used to construct a miRNA-TF-target gene network, among which miR-34a-5p, miR-34c-5p and miR-302b-3p seemed to regulate CCND1, WNT1 and MYC to be involved in Wnt signaling pathway through the LEF1 transcription factor. Therefore, we suggest miR-34a-5p/miR-34c-5p/miR-302b-3p -LEF1-CCND1/WNT1/MYC axis may be a crucial mechanism in inhibition of lung cancer metastasis by curcumin.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Curcumina/farmacología , Redes Reguladoras de Genes/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , MicroARNs/genética , Invasividad Neoplásica/prevención & control , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Movimiento Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología
19.
PLoS One ; 11(8): e0160026, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27532636

RESUMEN

Miscanthus is a leading bioenergy candidate for biofuels, and it thus becomes essential to characterize the desire natural Miscanthus germplasm accessions with high biomass saccharification. In this study, total 171 natural Miscanthus accessions were geographically mapped using public database. According to the equation [P(H/L| East) = P(H/L∩East)/P(East)], the probability (P) parameters were calculated on relationships between geographical distributions of Miscanthus accessions in the East of China, and related factors with high(H) or low(L) values including biomass saccahrification under 1% NaOH and 1% H2SO4 pretreatments, lignocellulose features and climate conditions. Based on the maximum P value, a golden cutting line was generated from 42°25' N, 108°22' E to 22°58' N, 116°28' E on the original locations of Miscanthus accessions with high P(H|East) values (0.800-0.813), indicating that more than 90% Miscanthus accessions were originally located in the East with high biomass saccharification. Furthermore, the averaged insolation showed high P (H|East) and P(East|H) values at 0.782 and 0.754, whereas other climate factors had low P(East|H) values, suggesting that the averaged insolation is unique factor on Miscanthus distributions for biomass saccharification. In terms of cell wall compositions and wall polymer features, both hemicelluloses level and cellulose crystallinity (CrI) of Miscanthus accessions exhibited relative high P values, suggesting that they should be the major factors accounting for geographic distributions of Miscanthus accessions with high biomass digestibility.


Asunto(s)
Poaceae/crecimiento & desarrollo , Poaceae/metabolismo , Biocombustibles , Biomasa , Pared Celular/metabolismo , China , Clima , Colorimetría , Hexosas/análisis , Hidrólisis , Lignina/análisis , Lignina/metabolismo , Pentosas/análisis , Poaceae/clasificación , Polisacáridos/química , Polisacáridos/metabolismo , Especificidad de la Especie
20.
Oncol Rep ; 36(2): 909-17, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27277197

RESUMEN

Lung cancer is the most common malignancy worldwide. This study aimed to identify miRNA biomarkers of lung adenocarcinoma and to investigate their molecular mechanisms. miRNA expression profiling of tumor tissues and adjacent normal tissues from 10 patients were detected using microarray. Differentially expressed miRNAs (DEMs) were identified, and were verified using quantitative reverse transcription-PCR. Thereafter, correlations between DEM expression and clinicopathological features were determined in 49 patients. Furthermore, Targetscan was utilized to predict target genes, among which transcription factors (TFs) were identified. The interactions among miRNAs, TFs and target genes were used to construct an miRNA-TF-target network. Totally, 11 DEMs were identified, among which two downregulated miRNAs (miR-126-3p and miR-451a) were validated. Low levels of miR-126-3p and miR-451a were associated with poor pathological stage, large tumor diameter and lymph node metastasis (P<0.05). Receiver operating characteristic analysis showed that both miRNAs could predict pathological stage, tumor diameter and lymph node metastasis of lung adenocarcinoma (AUC >0.65, P<0.05). For miR-126-3p, 154 target genes were predicted (e.g., PLXNB2), which were enriched in 29 pathways mainly concerning apoptosis and cancer. For miR­451a, 397 target genes were predicted, which were enriched in 5 pathways including 'PPAR signaling pathway'. Ten genes were co-regulated by miR-126-3p and miR-451a, e.g., TSC1. Furthermore, an miRNA-TF-target network was constructed, and a sub-network was identified, including 2 miRNAs, 15 targets, and 7 TFs. In conclusion, miR-126-3p and miR-451a predicted the severity of lung adenocarcinoma. However, the possible mechanisms explored by bioinformatics need to be further validated.


Asunto(s)
Adenocarcinoma/genética , Adenocarcinoma/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MicroARNs/genética , Adenocarcinoma del Pulmón , Apoptosis/genética , Biomarcadores de Tumor/genética , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Metástasis Linfática/genética , Metástasis Linfática/patología , Masculino , Persona de Mediana Edad , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...