Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202414960, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39282722

RESUMEN

Organic fluorophores with tunable π-conjugated paths have attracted considerable attention owing to their diverse properties and promising applications. Herein, we present a tailored butterfly like molecule, 2,2'-(2,5-bis (2,2-diphenylvinyl)-1,4-phenylene)dinaphtha-lene (BDVPN), which exhibits diverse photophysical features in its two polymorphs. The BP phase crystal, with its "aligned wings" conformation, possesses emissive characteristics that are nearly identical to those in dilute solutions. In contrast, the BN phase crystal, which adopts an "orthogonal wings" conformation, exhibits an unusual hypsochromic-shifted emission compared to its dilute solution counterparts. This intriguing hypsochromic-shifted emission originates from the reduction in the effective conjugated length of the molecular skeleton. Notably, BN phase crystals also exhibit exceptional optical performance, featuring high-efficiency emission (76.6%), low-loss optical waveguides (0.571 dB mm-1), deep-blue amplified spontaneous emission (ASE) with a narrow full width at half maximum (FWHM: 6.4 nm), and a unique 200 nm bathochromic shift of piezochromic luminescence.

2.
Plants (Basel) ; 13(18)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39339639

RESUMEN

Idesia polycarpa Maxim is a high-value species of fruit oil with edible, abundant linoleic acid and polyphenols. Idesia polycarpa is described as a dioecious species, and the flowers are male; female and bisexual flowers are produced on separate plants. In order to explore the flower types of Idesia polycarpa, the morphology of its flowers and inflorescence were investigated in this study. The flower and inflorescence types, the diameter, and the flowering sequencing in male and female inflorescence were determined. We also detected the length, width, and fresh weight of leaves, shoots, and female inflorescence, as well as the length and fresh weight of the petiole during the development. Additionally, we compared the length, width, the length/width ratio, and the flowering density between 5- and 7-year-old female trees. The phenological period observation of Idesia polycarpa showed that the development process can be roughly divided into 12 stages, including bud burst, leaf expansion, inflorescence growth, initial flowering, full flowering, flower decline, initial fruiting, fruit enlargement, fruit color change, fruit ripening, post-ripening of fruit, and leaf fall periods. Furthermore, four elites' fruit determined the oil content and the composition of fatty acid content during the development. The dynamic of fatty acids contents, the palrnitic acid, palmitoleic acid, stearic acid, oleic acid, and linolenic acid contents were detected during the fruit development of four elites. Moreover, the mineral elements content of fruit of four elites during development were determined. The patterns of vegetative and reproductive growth in young dioecious trees of Idesia polycarpa provided the theoretical basis for artificial pruning and training.

3.
Angew Chem Int Ed Engl ; : e202411911, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073369

RESUMEN

Stimulated emission of organic π-conjugated molecule in solid state remains a significant challenge, mainly involving the mode of molecular stacking that invariably alters the photo-physical processes. Herein, we successfully realized the stimulated emission in molecular crystals using a hydrogen-bonded co-crystallization strategy. Two hydrogen-bonded co-crystals, obtained from 1,4-bis-p-cyanostyrylbenzene (CNDSB) and two types of co-formers, can boost stimulated emission and show decent amplified spontaneous emission (ASE), whereas the parent CNDSB crystal is not SE-active. Crystal structural analysis demonstrated that the co-crystallization eliminated excimer formation. The resulting higher kr and shorter excited-lifetime led to a larger stimulated-emission cross section, which benefited to the occurrence of ASE. Simultaneously, the uniaxial arrangements along long axis of co-crystal together contributed to highly polarized emission. This system presents very rare evidence of boosting stimulated emission by binary co-crystallization, which enriches our insights into organic solid-state lasers.

4.
Acta Pharmacol Sin ; 42(7): 1069-1079, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33758353

RESUMEN

Sepsis is life-threatening organ dysfunction due to dysregulated systemic inflammatory and immune response to infection, often leading to cognitive impairments. Growing evidence shows that artemisinin, an antimalarial drug, possesses potent anti-inflammatory and immunoregulatory activities. In this study we investigated whether artemisinin exerted protective effect against neurocognitive deficits associated with sepsis and explored the underlying mechanisms. Mice were injected with LPS (750 µg · kg-1 · d-1, ip, for 7 days) to establish an animal model of sepsis. Artemisinin (30 mg · kg-1 · d-1, ip) was administered starting 4 days prior LPS injection and lasting to the end of LPS injection. We showed that artemisinin administration significantly improved LPS-induced cognitive impairments assessed in Morris water maze and Y maze tests, attenuated neuronal damage and microglial activation in the hippocampus. In BV2 microglial cells treated with LPS (100 ng/mL), pre-application of artemisinin (40 µΜ) significantly reduced the production of proinflammatory cytokines (i.e., TNF-α, IL-6) and suppressed microglial migration. Furthermore, we revealed that artemisinin significantly suppressed the nuclear translocation of NF-κB and the expression of proinflammatory cytokines by activating the AMPKα1 pathway; knockdown of AMPKα1 markedly abolished the anti-inflammatory effects of artemisinin in BV2 microglial cells. In conclusion, atemisinin is a potential therapeutic agent for sepsis-associated neuroinflammation and cognitive impairment, and its effect is probably mediated by activation of the AMPKα1 signaling pathway in microglia.


Asunto(s)
Artemisininas/uso terapéutico , Microglía/efectos de los fármacos , Trastornos Neurocognitivos/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Sepsis/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Antiinflamatorios/uso terapéutico , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/patología , Muerte Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/etiología , Inflamación/metabolismo , Lipopolisacáridos , Masculino , Ratones Endogámicos C57BL , Microglía/metabolismo , Prueba del Laberinto Acuático de Morris/efectos de los fármacos , Trastornos Neurocognitivos/etiología , Trastornos Neurocognitivos/metabolismo , Neuronas/efectos de los fármacos , Sepsis/inducido químicamente , Sepsis/complicaciones , Sepsis/metabolismo
5.
Cell Mol Neurobiol ; 40(7): 1231-1242, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32140899

RESUMEN

Recent studies demonstrated that FoxO3 circular RNA (circFoxO3) plays an important regulatory role in tumourigenesis and cardiomyopathy. However, the role of circFoxO3 in neurodegenerative diseases remains unknown. The aim of this study was to examine the possible role of circFoxO3 in neurodegenerative diseases and the underlying mechanisms. To model human neurodegenerative conditions, hippocampus-derived neurons were treated with glutamate. Using molecular and cellular biology approaches, we found that circFoxO3 expression was significantly higher in the glutamate treatment group than that in the control group. Furthermore, silencing of circFoxO3 protected HT22 cells from glutamate-induced oxidative injury through the inhibition of the mitochondrial apoptotic pathway. Collectively, our study demonstrates that endogenous circFoxO3 plays a key role in inducing apoptosis and neuronal cell death and may act as a novel therapeutic target for neurodegenerative diseases.


Asunto(s)
Apoptosis/efectos de los fármacos , Ácido Glutámico/farmacología , Hipocampo/metabolismo , Mitocondrias/metabolismo , ARN Circular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Apoptosis/fisiología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Proteína Forkhead Box O3/genética , Ácido Glutámico/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA