Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 930: 172769, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38670363

RESUMEN

Water hypoxia and metal pollution are commonly co-existed in urbanized estuaries. This study focuses on the effect of an extended dissolved oxygen (DO) full-life dynamics (86 days) on metal behavior across the sediment-water interface through laboratory microcosms from two typical zones in Pearl River Estuary. Combining our time-series results of concentrations and fluxes, it showed that Co, Ni, and Zn consistently presented a release-precipitation-release trajectory with an oxic-hypoxic-anoxic-reoxic transition, characterized with highly variable behavior in the hypoxic-anoxic hotmoments. In parallel, changing DO dynamics significantly activated a repartitioning process of Co, Ni, and Zn among several species and elevated their risk in sediments, promoting the formation of more labile species in the 0-10 mm hotspots, where metals sensitively responded. Over DO transition, metal cycling was tightly co-related with Fe, Mn, and S elements. It was found that Mn was dominated in low oxygen-hypoxic period, but switched to S and Fe in anoxic stage, limiting sustained metal liberation to overlying water. Enlarging this experiment to practice, released Zn fluxes from sediments in hypoxic summer could contribute about ∼2.0% to their stocks in water column, while increase to 20% (1 m bottom water) in highly-stratified zones. This study has certain significance in understanding the long-term metal behavior and fate in estuarine regions, even lakes and reservoirs.

2.
Mar Pollut Bull ; 187: 114517, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36580839

RESUMEN

The influence of overlying hydrodynamics on the exchange behaviour and fluxes of heavy metals at the sediment-water interface (SWI) is poorly understood. In the study, metals exchange behaviour and exchange rate at the SWI under resuspended and undisturbed scenario were investigated The results showed that dissolved Cr, Cu, Zn, and Pb concentrations increased rapidly to attain maximum values between 0.3 and 0.5 N·m-2 after the sediment resuspended. Following the quick release, metals concentrations gradually decreased and remained at relatively low levels, especially for Cu and Zn. Meanwhile, Cu, Zn, and Pb had higher potential remobilization potential in the undisturbed case. Calculating with the hydrodynamics in the Modaomen, the metals efflux under the resuspension scenario could reach 0.55 to 4130.83 mg·m-2·yr-1, which were 1-3 orders of magnitudes higher than the undisturbed case. Whether or not resuspension events occurred, estuarine sediments were source of heavy metals, especially in the weakly mixed zone.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Agua , Plomo , Sedimentos Geológicos , Contaminantes Químicos del Agua/análisis , Metales Pesados/análisis , Monitoreo del Ambiente/métodos , China
3.
Sci Total Environ ; 842: 156774, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35724782

RESUMEN

Shiziyang Bay, located in the upstream of the Pearl River Estuary, has frequently suffered from hypoxia since 2000, which has persisted in recent years despite effective controls on anthropogenic pollutant loads. To explore the underlying causes, changes in dissolved oxygen (DO), nutrients, chemical oxygen demand (COD), and chlorophyll a (Chl a) along the bay in response to altered pollutant inputs were investigated using observations collected in summers of 2015-2019 and historical data during 2000-2008. In addition, DO sources and sinks were calculated based on data from August 2020 and laboratory incubations for water column respiration (WCR) and sediment oxygen uptake, and were compared with their equivalents in August 2008 to elucidate changes in primary processes controlling hypoxia. The results showed that ammonia has decreased significantly with pollutant control, while other parameters responded in different trends, especially for Chl a (with a substantial increase over time). The intensified eutrophication contributed to high COD levels, leading to a strong WCR (as dominant oxygen depletion) close to that in the 2000s and thereby maintaining low-oxygen conditions despite reduced effluent discharges. The shifted primary oxygen-consuming substances from allochthonous inputs to in-situ phytoplankton production were also evidenced by significant correlation between oxygen consumption rate and Chl a in recent data. Simultaneously, the enhanced algal blooms could also modulate oxygen supply, resulting in higher photosynthetic oxygen production and lower air-sea reaeration compared with the past. Furthermore, the impact of major environmental changes on exacerbated eutrophication was explored and it was speculated that notable declined sediment loads would be important by improving light conditions to promote phytoplankton proliferation in the bay. Collectively, substantial control on eutrophication as well as tracking DO source-to-sink processes is of great importance to mitigate hypoxia in Shiziyang bay.


Asunto(s)
Contaminantes Ambientales , Calidad del Agua , Bahías , China , Clorofila/análisis , Clorofila A , Monitoreo del Ambiente , Eutrofización , Humanos , Hipoxia , Oxígeno/análisis , Fitoplancton
4.
Environ Pollut ; 287: 117277, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34004474

RESUMEN

Many estuaries have undergone severe saltwater intrusion in addition to simultaneously experiencing serious heavy metal pollution. To explore the effect of water density stratification associated with saltwater intrusion on the behaviour of heavy metals (Cr, Co, Ni, Cu, Zn, As, Pb, and Cd) in water and sediments, a field survey was conducted in a typical estuary (Modaomen). The content, distribution, and mobility of heavy metals were investigated, as well as the influence of environmental factors on their future. The results showed that Modaomen estuary was characterised by a notable variation in salinity along the estuary, presenting total freshwater upstream, high salinity stratification water in the mouth, and saltwater offshore. Dissolved metals presented a prominent gradient vertically, with 1.2-2.1 times higher in bottom water than in surface water and the highest contents in the highly-stratified bottom water. Elevated salinity and restricted mixing induced by water stratification were likely the causes of this outcome. The distribution of heavy metals in sediments was greatly governed by grain size, Fe/Mn (hydr)oxides, total organic carbon, salinity, and dissolved oxygen. Comprehensive evaluation, combined with total contents and chemical fractions of heavy metals, indicated that internal release from sediments contributed a considerable part to the higher levels of heavy metals in bottom water, particularly for Zn and Pb, which was fully consistent with their status in water body, and elevated salinity and lack of oxygen were likely the primary driving factors. During the phase-partition processes between bottom water and sediments, partitioning coefficients were markedly lower in the highly stratified zone, implying that saltwater intrusion facilitated the mobility and repartitioning processes of metals. Because of increased levels and toxicity of heavy metals in water and extended residence time during saltwater intrusion, the potential damage to the estuarine ecosystem should receive more attention.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , China , Ecosistema , Monitoreo del Ambiente , Estuarios , Sedimentos Geológicos , Metales Pesados/análisis , Ríos , Salinidad , Agua , Contaminantes Químicos del Agua/análisis
5.
Environ Pollut ; 266(Pt 3): 115340, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32828031

RESUMEN

The identification and quantification of pharmaceutical and personal care products (PPCPs) in aquatic ecosystems is critical to further studies and elucidation of their fate as well as the potential threats to aquatic ecology and human health. This study used mass balances to analyse the sources, transformation, and transport of PPCPs in rivers based on the population and consumption habits of residents, the removal level of sewage treatment, the persistence and partitioning mechanisms of PPCPs, hydrological conditions, and other natural factors. Our results suggested that in an urbanized river of Guangzhou City, China, the daily consumption of PPCPs was the main reason for the variety of species and concentrations of PPCPs. Through the determination of PPCPs in the river water samples and a central composite design (CCD) methodology, the dominant elimination mechanisms of caffeine and carbamazepine from river water were photolysis and biodegradation, but that of triclosan was sorption rather than biodegradation. The mass data of 3 PPCPs were estimated and corroborated using the measured data to evaluate the accuracy of the mass balance. Finally, caffeine, carbamazepine and triclosan discharged from the Shijing River into the Pearl River accounted for 97.81%, 99.52%, and 28.00%, respectively, of the total mass of these three compounds in the surface water of Shijing River. The results suggest that photolysis are the main process of natural attenuation for selected PPCPs in surface waters of river systems, and the transfer processes of PPCPs is mainly attributed to riverine advection. In addition, the low concentration of dissolved oxygen inhibited the degradation of PPCPs in the surface water of Shijing River.


Asunto(s)
Cosméticos , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua/análisis , China , Ciudades , Ecosistema , Monitoreo del Ambiente , Humanos , Ríos
6.
Chemosphere ; 225: 829-838, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30904763

RESUMEN

The aim of this study is to investigate the distribution, ecological risk and quantitative source apportionment of seven heavy metals in surface sediments along a partially mixed estuary (Modaomen, China). The study area was divided into three regions based on salt-freshwater mixing: a tidal river channel, weakly mixed zone and strongly mixed zone. The concentrations of Cu, Zn, Pb, Cd, Cr and Ni were significantly higher in the weakly mixed zone, while a higher Co content was found in the tidal river channel. From enrichment factor (EF) analyses, Cd was moderate to extreme severely enriched at most stations, and other heavy metals were minor enrichments. Adverse effects on aquatic biota may occur occasionally for all seven heavy metals based on the sediment quality guidelines (SQGs). The correlations between Al and heavy metals suggested that metals in sediments were mainly attributed to anthropogenic sources. Then Positive matrix factorization (PMF) and Geostatistic method were used to quantify the heavy metal sources and determine impacted regions. A mixed source from the inner Lingding Bay and West River contributed approximately 50% of the Cu, Zn, Pb, Cr and Ni. The electroplating industry accounted for about 57% of the Cd content, and the major contaminated area was concentrated at the confluence of the West River and its tributaries. The alloy industry contributed approximately 65% of the Co, most of which was near an industrial park.


Asunto(s)
Estuarios , Sedimentos Geológicos/análisis , Residuos Industriales/análisis , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , China , Monitoreo del Ambiente , Agua Dulce/química , Ríos/química
7.
Sci Total Environ ; 655: 1125-1138, 2019 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-30577106

RESUMEN

We examined the occurrence and fate of pharmaceuticals and personal care products in surface water by combining laboratory experiments with numerical simulations. The degradation processes of two typical PPCPs (triclosan and carbamazepine) collected from the Shahe Stream were studied. Hydrolysis, biodegradation, and photolysis were the three major routes of triclosan (TCS) and carbamazepine (CBZ) degradation. A central composite design method was used to investigate the effects of related natural parameters (including pH, dissolved oxygen, salinity, temperature, light intensity, and humic acid) on the TCS and CBZ degradation processes in the laboratory. Our results showed that the main degradation pathway of CBZ and TCS was direct photolysis during the daytime and that the maximal biodegradation rates of CBZ and TCS occurred at 22 °C when the optimum temperature function was used. Based on our experimental results, the observed degradation of CBZ and TCS followed pseudo-first-order kinetics, and the degradation kinetic equations under the influence of multiple natural parameters were established with estimated average degradation rate constants of 1.2452E-7 s-1 and 3.1260E-5 s-1 for CBZ and TCS, respectively. The degradation rate constants were incorporated into a one-dimensional, simply integrated hydrodynamic and water quality model. The proposed numerical model was applied to depict the transportation and transformation of CBZ and TCS in surface water and was validated by observational data from the Shahe Stream. The results showed that our model reproduced the observed patterns of CBZ and TCS concentrations reasonably, with slight overestimations compared to the observed data; the relative errors between the simulated and the observed concentrations were 5.85%-6.82% for CBZ and -156.85%--7.18% for TCS. According to our simulation, the spatial distribution of TCS in surface water was determined by biochemical degradation processes that were most affected by temperature under natural conditions; in contrast, the distribution of CBZ was largely controlled by diffusion.


Asunto(s)
Antibacterianos/metabolismo , Anticonvulsivantes/metabolismo , Carbamazepina/metabolismo , Triclosán/metabolismo , Contaminantes Químicos del Agua/metabolismo , Antibacterianos/química , Anticonvulsivantes/química , Biodegradación Ambiental , Carbamazepina/química , China , Hidrodinámica , Cinética , Modelos Teóricos , Fotólisis , Ríos , Triclosán/química , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...