Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Cancer Res ; 13(4): 1240-1258, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168356

RESUMEN

Pancreatic adenocarcinoma (PAAD) has a poor prognosis and is relatively unresponsive to immunotherapy. Gasdermin C (GSDMC) induces pyroptosis in cancer cells and inflammation in the tumor microenvironment. However, whether GSDMC expression in PAAD is associated with survival or response to immunotherapy remains unknown. GSDMC expression and the relationship between GSDMC and patient survival or immune infiltration in PAAD were examined using data in the The Cancer Genome Atlas (TCGA), Gene Expression Ominbus (GEO), Genotype-Tissue Expression (GTEx) and Cancer Cell Line Encyclopedia (CCLE) databases. The TCGA PAAD cohort could be divided into two distinct risk groups based on the expression of GSDMC-related genes (GRGs). The TIDE algorithm predicted that the low-risk group was more responsive to immune checkpoint blockade therapy than the high-risk group. A novel 15-gene signature was constructed and could predict the prognosis of PAAD. In addition, the 15-gene signature model predicted the infiltration of immune cells and Immune checkpoint blockade (ICB) treatment response. Immunohistochemical staining assessment of patient-derived human tissue microarray (TMA) from 139 cases of local PAAD patients revealed a positive correlation between GSDMC expression and PD-L1 expression but a negative correlation between GSDMC expression and infiltration of low CD8+ T cells. Moreover, the overexpression of GSDMC was related to poor overall survival (OS). This study suggests that GSDMC is a valuable biomarker for predicting PAAD prognosis and predicts the immunotherapy response of PAAD.

2.
Kaohsiung J Med Sci ; 36(1): 27-34, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31631531

RESUMEN

Multiple microRNAs (miRs) have also been implicated in ischemic brain injury. This research intended to probe the regulatory function and the mechanism of miR-15a on the ischemic brain injury induced by oxygen-glucose deprivation/reoxygenation (OGD/R) in neurons of rats. The OGD/R model was established with the cortical neurons separated from rats. After transfection with miR-15a mimic negative control (NC), miR-15a mimic, miR-15a inhibitor NC and miR-15a inhibitor, the OGD/R-induced apoptosis were detected. Using bioinformatic softwares including TargetScan, miRanda, and miRWalk to predict the underlying targets of miR-15a, and the binding of miR-15a with brain-derived neurotrophic factor (BDNF) were validated with double-fluorescein reporter assay system. The expression levels of BDNF mRNA and protein were detected with qRT-PCR and western blot. The effect of miR-15a on PI3K/AKT pathway in neurons submitted to OGD/R was also investigated. The findings showed that miR-15a may mediate the apoptosis of neurons submitted to OGD/R, and lower expression of Bcl-2 and higher expression of Bax and cleaved caspase-3 were observed. BDNF was screened as the candidate target, and the direct binding of miR-15a with 3'-UTR of BDNF were verified. Further research showed that miR-15a downregulated the expression of BDNF mRNA and protein, thus exerted negative regulatory effect on the OGD/R injury. PI3K/AKT pathway may be related to the regulatory effect of miR-15a. Our findings contribute to uncovering novel pathogenesis for ischemic brain injury.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Glucosa/metabolismo , MicroARNs/metabolismo , Neuronas/metabolismo , Oxígeno/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Western Blotting , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Biología Computacional , MicroARNs/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...