Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 35(31)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38688256

RESUMEN

Herein a series of size-selected TaN(N = 147, 309, 561, 923, 1415, 2057, 6525, 10 000, 20 000) clusters are generated using a gas-phase condensation cluster beam source equipped with a lateral time-of-flight mass-selector. Aberration-corrected scanning transmission electron microscopy (AC-STEM) imaging reveals good thermal stability of TaNclusters in this study. The oxidation-induced amorphization is observed from AC-STEM imaging and further demonstrated through x-ray photoelectron spectroscopy and energy-dispersive spectroscopy. The oxidized Ta predominantly exists in the +5 oxidation state and the maximum spontaneous oxidation depth of the Ta cluster is observed to be 5 nm under prolonged atmosphere exposure. Furthermore, the size-dependent sintering and crystallization processes of oxidized TaNclusters are observed with anin situheating technique, and eventually, ordered structures are restored. As the temperature reaches 1300 °C, a fraction of oxidized Ta309clusters exhibit decahedral and icosahedral structures. However, the five-fold symmetry structures are absent in larger clusters, instead, these clusters exhibit ordered structures resembling those of the crystalline Ta2O5films. Notably, the sintering and crystallization process occurs at temperatures significantly lower than the melting point of Ta and Ta2O5, and the ordered structures resulting from annealing remain well-preserved after six months of exposure to ambient conditions.

2.
Nanoscale ; 15(36): 15043-15049, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37671432

RESUMEN

In this study, we successfully synthesized rod-shaped [Au25(PPh3)10(S-Adm)5Cl2]2+ nanoclusters using kinetic controls. The complete molecular structure was determined by single-crystal X-ray crystallography and electrospray ionization mass spectrometry. In comparison with the previously reported [Au25(PPh3)10(PET)5Cl2]2+ clusters, both nanoclusters have an icosahedral composition of Au13 linked by Au atoms that share a vertex, but [Au25(PPh3)10(S-Adm)5Cl2]2+ clusters appear elongated due to the rigidity of adamantane. We conducted ultraviolet-visible spectrophotometry (UV-vis) measurements of [Au25(PPh3)10(PET)5Cl2]2+ and [Au25(PPh3)10(S-Adm)5Cl2]2+ in dichloromethane solvent to elucidate the modulation of the cluster properties of different ligands. The lowest energy absorption peak of [Au25(PPh3)10(S-Adm)5Cl2]2+ shifted to lower energies compared to the [Au25(PPh3)10(PET)5Cl2]2+ clusters in UV-vis measurements. Temperature-dependent absorption measurements revealed that [Au25(PPh3)10(S-Adm)5Cl2]2+ clusters were less affected by temperature compared to [Au25(PPh3)10(PET)5Cl2]2+. This result is attributed to the exciton phonon coupling of [Au25(PPh3)10(S-Adm)5Cl2]2+ clusters being weaker than [Au25(PPh3)10(PET)5Cl2]2+ clusters. Furthermore, the absorption spectra of [Au25(PPh3)10(PET)5Cl2]2+ and [Au25(PPh3)10(S-Adm)5Cl2]2+ clusters were measured using different types of solutions, and it was found that the lowest energy absorption peaks of [Au25(PPh3)10(S-Adm)5Cl2]2+ were shifted and affected by the solution at room temperature, which suggested that the [Au25(PPh3)10(S-Adm)5Cl2]2+ clusters with solution hydrogen bonds also interacted strongly at room temperature. Theoretical calculations show that changes in ligands affect the differences in the molecular orbitals and structures of the clusters, which cause changes in the optical properties.

3.
J Phys Chem Lett ; 14(5): 1156-1164, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36709444

RESUMEN

Amorphous metal-organic framework (MOF) materials have drawn extensive interest in the design of high-performance electrocatalysts for use in the electrochemical oxygen evolution reaction. However, there are limitations to the utilization of amorphous MOFs due to their low electrical conductivity and unsatisfactory stability. Herein, a novel amorphous-crystalline (AC) heterostructure is successfully constructed by synthesizing a crystalline metal sulfide (MS)-embedded amorphous Ni0.67Fe0.33-MOF, namely an MS/Ni0.67Fe0.33-MOF. It exhibits excellent catalytic performance (a low overpotential of 248 mV at 10 mA cm-2 with a small Tafel slope of 50 mV decade-1), durability, and stability (only 8% degradation of the current density at a constant voltage after 24 h). This work thus sheds light on the engineering of highly efficient catalysts with AC heterointerfaces for optimizing water-splitting systems.

4.
Nanotechnology ; 33(50)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36063786

RESUMEN

The idea of exploring the bottom brink of material science has been carried out for more than two decades. Clusters science is the frontmost study of all nanoscale structures. Being an example of 0-dimensional quantum dot, nanocluster serves as the bridge between atomic and conventionally understood solid-state physics. The forming mechanism of clusters is found to be the mutual effects of electronic and geometric configuration. It is found that electronic shell structure influences the properties and geometric structure of the cluster until its size becomes larger, where electronic effects submerge in geometric structure. The discrete electronic structures depend on the size and conformation of clusters, which can be controlled artificially for potential device applications. Especially, small clusters with a size of 1-2 nm, whose electronic states are possibly discrete enough to overcome thermal fluctuations, are expected to build a single-electron transistor with room temperature operation. However, exciting as the progress may be seen, cluster science still falls within the territory of merely the extension of atomic and molecular science. Its production rate limits the scientific and potential application research of nanoclusters. It is suggested in this review that the mass-produce ability without losing the atomic precision selectivity would be the milestone for nanoclusters to advance to material science.

5.
Small ; 17(27): e2004541, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33554437

RESUMEN

Size-selected 3 nm gas-phase Au clusters dispersed by cluster beam deposition (CBD) on a conducting fluorine-doped tin oxide template show strong enhancement in mass activity for the methanol electro-oxidation (MEO) reaction compared to previously reported nanostructured gold electrodes. Density functional theory-based modeling on the corresponding Au clusters guided by experiments attributes this high MEO activity to the high density of exposed under-coordinated Au atoms at their faceted surface. In the description of the activity trends, vertices and edges are the most active sites due to their favorable CO and OH adsorption energies. The faceted structures occurring in this size range, partly preserved upon deposition, may also prevent destructive restructuring during the oxidation-reduction cycle. These results highlight the benefits of using CBD in fine-tuning material properties on the nanoscale and designing high-performance fuel cell electrodes with less material usage.

6.
Natl Sci Rev ; 8(12): nwaa282, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35382220

RESUMEN

The plasmonic response of gold clusters with atom number (N) = 100-70 000 was investigated using scanning transmission electron microscopy-electron energy loss spectroscopy. For decreasing N, the bulk plasmon remains unchanged above N = 887 but then disappears, while the surface plasmon firstly redshifts from 2.4 to 2.3 eV above N = 887 before blueshifting towards 2.6 eV down to N = 300, and finally splitting into three fine features. The surface plasmon's excitation ratio is found to follow N 0.669, which is essentially R 2. An atomically precise evolution picture of plasmon physics is thus demonstrated according to three regimes: classical plasmon (N = 887-70 000), quantum confinement corrected plasmon (N = 300-887) and molecule related plasmon (N < 300).

7.
Nat Nanotechnol ; 15(12): 1019-1024, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33046843

RESUMEN

Electrets are dielectric materials that have a quasi-permanent dipole polarization. A single-molecule electret is a long-sought-after nanoscale component because it can lead to miniaturized non-volatile memory storage devices. The signature of a single-molecule electret is the switching between two electric dipole states by an external electric field. The existence of these electrets has remained controversial because of the poor electric dipole stability in single molecules. Here we report the observation of a gate-controlled switching between two electronic states in Gd@C82. The encapsulated Gd atom forms a charged centre that sets up two single-electron transport channels. A gate voltage of ±11 V (corresponding to a coercive field of ~50 mV Å-1) switches the system between the two transport channels with a ferroelectricity-like hysteresis loop. Using density functional theory, we assign the two states to two different permanent electrical dipole orientations generated from the Gd atom being trapped at two different sites inside the C82 cage. The two dipole states are separated by a transition energy barrier of 11 meV. The conductance switching is then attributed to the electric-field-driven reorientation of the individual dipole, as the coercive field provides the necessary energy to overcome the transition barrier.

8.
Nanoscale ; 12(10): 6047-6056, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32129392

RESUMEN

We report a new approach to design flexible functional material platforms based on electropolymerized polyaniline (PANI) polymer nanofilms modified with bimetallic nanoclusters (NCs) for efficient electro-oxidation of small organic molecules. Composition defined ligand free Pt0.75Ni0.25 NCs were synthesized in the gas phase using the Cluster Beam Deposition (CBD) technology and characterized using RToF, HAADF-STEM, XAFS and XPS. NCs were then directly deposited on PANI coated templates to construct electrodes. Dopamine (DP) molecules were used as a representative organic analyte and the influence of the NC-PANI hybrid atomistic structure on the electrochemical and electrocatalytic performance was investigated. The as prepared, nearly monodispersed, Pt0.75Ni0.25 NCs of ca. 2 nm diameter featuring a PtOx surface combined with a shallow platelet-like Ni-O(OH) phase formed a densely packed active surface on PANI at ultralow metal coverages. Electrochemical measurements (EIS and CV) show a 2.5 times decrease in charge transfer resistance and a remarkable 6-fold increase at lower potential in the mass activity for Pt0.75Ni0.25 NCs in comparison with their pure Pt counterparts. The enhanced electrochemical performance of the Pt0.75Ni0.25 NC hybrid's interface is ascribed to the formation of mixed Pt metal and Ni-O(OH) phases at the surface of the alloyed PtNi cores of the bimetallic NCs under electrochemical conditions combined with an efficient charge conduction pathway between NCs.

9.
Nanoscale Adv ; 2(7): 2720-2725, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-36132384

RESUMEN

A size-selected beam of Au923±20 clusters is generated in a gas-phase condensation cluster source equipped with a lateral time-of-flight mass selector. The beam current reaches up to 9.13 nA for small clusters and 80 pA for Au923±20 clusters, which are then analyzed using a scanning transmission electron microscope. Four types of metastable structures are observed for the Au923±20 clusters, including ino-decahedron (Dh), cuboctahedron and icosahedron (Ih). The proportion of bulk-favorable cuboctahedron (i.e. face center cubic (Fcc)) structure takes up only 10-20%, while the penta-rotating symmetrical structures (Dh/Ih) are the dominant ones which take up over three quarters. Changing the beam condition may optimize the clusters from Dh-dominant to the Ih-dominant phase, which paves the way towards nanoparticle control beyond the diameters.

10.
Nanoscale ; 10(14): 6684-6694, 2018 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-29589035

RESUMEN

The structure and atomic ordering of Au-Ag nanoparticles grown in the gas phase are determined by a combination of HAADF-STEM, XPS and Refl-XAFS techniques as a function of composition. It is shown consistently from all the techniques that an inversion of chemical ordering takes place by going from Au-rich to Ag-rich compositions, with the minority element always occupying the nanoparticle core, and the majority element enriching the shell. With the aid of DFT calculations, this composition-tunable chemical arrangement is rationalized in terms of a four-step growth process in which the very first stage of cluster nucleation plays a crucial role. The four-step growth mechanism is based on mechanisms of a general character, likely to be applicable to a variety of binary systems besides Au-Ag.

11.
J Am Chem Soc ; 137(48): 15161-8, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26544914

RESUMEN

Identifying the ripening modes of supported metal nanoparticles used in heterogeneous catalysis can provide important insights into the mechanisms that lead to sintering. We report the observation of a crossover from Smoluchowski to Ostwald ripening, under realistic reaction conditions, for monomodal populations of precisely defined gold particles in the nanometer size range, as a function of decreasing particle size. We study the effects of the CO oxidation reaction on the size distributions and atomic structures of mass-selected Au(561±13), Au(923±20) and Au(2057±45) clusters supported on amorphous carbon films. Under the same conditions, Au(561±13) and Au(923±20) clusters are found to exhibit Ostwald ripening, whereas Au(2057±45) ripens through cluster diffusion and coalescence only (Smoluchowski ripening). The Ostwald ripening is not activated by thermal annealing or heating in O2 alone.

12.
Nanoscale ; 7(3): 885-8, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25463773

RESUMEN

We have investigated the atomic structure of the Au55(PPh3)12Cl6 Schmid cluster by using aberration-corrected scanning transmission electron microscopy (STEM) combined with multislice simulation of STEM images. Atom counting was employed, with size-selected clusters as mass standards, to "fractionate" the correct cluster size in the image analysis. Systematic structure analysis shows that a hybrid structure, predicted by density functional theory, best matches nearly half the clusters observed. Most other clusters are amorphous. We believe our conclusions are consistent with all the previous, apparently contradictory structural studies of the Schmid cluster.

13.
Phys Chem Chem Phys ; 16(48): 26631-7, 2014 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-25307787

RESUMEN

We report an investigation into the effects of the vapour-phase hydrogenation of 1-pentyne on the atomic structures of size-selected Au and Pd nanoclusters supported on amorphous carbon films. We use aberration-corrected high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) to image populations of the nanoclusters at atomic resolution, both before and after the reaction, and we assign their atomic structures by comparison with multi-slice image simulations over a full range of cluster orientations. Gold nanoclusters consisting of 923 ± 20 and 2057 ± 45 atoms are found to be robust, exhibiting high structural stability. However, a significant portion of Pd923±26 nanoclusters that appear amorphous prior to treatment are found to exhibit high symmetry structures post-reaction, which is interpreted as the reduction of oxidised Pd nanoclusters under the reaction conditions.

14.
J Am Chem Soc ; 134(48): 19560-3, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23167293

RESUMEN

We predict and analyze density-functional theory (DFT)-based structures for the recently isolated Au(40)(SR)(24) cluster. Combining structural information extracted from ligand-exchange reactions, circular dichroism and transmission electron microscopy leads us to propose two families of low-energy structures that have a chiral Au-S framework on the surface. These families have a common geometrical motif where a nonchiral Au(26) bi-icosahedral cluster core is protected by 6 RS-Au-SR and 4 RS-Au-SR-Au-SR oligomeric units, analogously to the "Divide and Protect" motif of known clusters Au(25)(SR)(18)(-/0), Au(38)(SR)(24) and Au(102)(SR)(44). The strongly prolate shape of the proposed Au(26) core is supported by transmission electron microscopy. Density-of-state-analysis shows that the electronic structure of Au(40)(SR)(24) can be interpreted in terms of a dimer of two 8-electron superatoms, where the 8 shell electrons are localized at the two icosahedral halves of the metal core. The calculated optical and chiroptical characteristics of the optimal chiral structure are in a fair agreement with the reported data for Au(40)(SR)(24).


Asunto(s)
Electrones , Compuestos Orgánicos de Oro/química , Teoría Cuántica , Dicroismo Circular , Dimerización , Modelos Moleculares , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...