Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 278: 116443, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38744068

RESUMEN

Heavy-metal contamination in soil has long been a persistent challenge and the utilization of agricultural waste for in-situ stabilization remediation presents a promising approach to tackle this problem. Agricultural wastes exhibit promising potential in the remediation of contaminated land and modification could improve the adsorption performance markedly. Citric acid and Fe3O4 treated sugarcane bagasse adsorbed more heavy metals than raw materials in the aqueous system, employing these materials for heavy metal remediation in soil holds significant implications for broadening the raw material source of passivators and enhancing waste utilization efficiency. In this paper, a 120-day soil incubation study was conducted to compare the effects of pristine sugarcane bagasse (SB), citric-acid modified (SSB1, SSB2 and SSB3 with increasing proportion of citric acid) and citric-acid/Fe3O4 modified (MSB1, MSB4 and MSB7 with increasing proportion of Fe3O4) sugarcane bagasse at 1 % addition rate on cadmium (Cd) and copper (Cu) passivation. The SB, SSB1 and MSB1 did not always decrease the content of CaCl2-extractable Cd while all the seven amendments decreased the CaCl2-extractable Cu during the experiment period. Among all materials, SSB3 and MSB7 exhibited the highest efficiency in reducing the concentrations of CaCl2-extractable Cd and Cu. At Day 120, SB, SSB3 and MSB7 reduced the content of CaCl2-extractable Cd by 8 %, 18 % and 24 %, and of CaCl2-extractable Cu by 25 %, 50 % and 61 %, respectively. The efficiency of Cd and Cu immobilization was associated positively with the pH, functional groups and H-bonds of the amendments. The results suggest that the efficiency of sugarcane bagasse in heavy-metal passivation can be largely enhanced through chemical modifications using high proportions of citric acid and Fe3O4.

2.
Small ; : e2400142, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38676334

RESUMEN

Complex temporal molecular signals play a pivotal role in the intricate biological pathways of living organisms, and cells exhibit the ability to transmit and receive information by intricately managing the temporal dynamics of their signaling molecules. Although biomimetic molecular networks are successfully engineered outside of cells, the capacity to precisely manipulate temporal behaviors remains limited. In this study, the catalysis activity of isothermal DNA polymerase (DNAP) through combined use of molecular dynamics simulation analysis and fluorescence assays is first characterized. DNAP-driven delay in signal strand release ranged from 100 to 102 min, which is achieved through new strategies including the introduction of primer overhangs, utilization of inhibitory reagents, and alteration of DNA template lengths. The results provide a deeper insight into the underlying mechanisms of temporal control DNAP-mediated primer extension and DNA strand displacement reactions. Then, the regulated DNAP catalysis reactions are applied in temporal modulation of downstream DNA-involved reactions, the establishment of dynamic molecular signals, and the generation of barcodes for multiplexed detection of target genes. The utility of DNAP-based signal delay as a dynamic DNA nanotechnology extends beyond theoretical concepts and achieves practical applications in the fields of cell-free synthetic biology and bionic sensing.

3.
Angew Chem Int Ed Engl ; : e202405838, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647574

RESUMEN

The transition-metal-catalyzed [4 + 4] cycloaddition leading to cyclooctanoids has been centralizing on dimerization between 1,3-diene type substrates. Here, we extend a [4σ + 4π - 1] and [4σ + 4π] cycloaddition strategy to access the 7/8-membered fused carbocycles through Rh-catalyzed coupling between the 4σ-donor (benzocyclobutenones) and pendant diene (4π) motifs. The two pathways can be controlled by adjusting the solvated CO concentration. A broad scope (>40 examples) of 5-6-7 and 5-6-8 polyfused carbocycles was obtained with good yields (up to 90%). The density functional theory (DFT) calculations, kinetic monitoring and 13C-labeling experiments were carried out, suggesting a plausible mechanism. Notably, the 5-6-7 tricycle 2v was found to be a very rare, potent, and selective ligand for the liver X receptor ß (KD=0.64 µM), which is a potential therapeutic target for cholesterol-metabolism-related fatal diseases.

4.
J Synchrotron Radiat ; 31(Pt 3): 432-437, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38587895

RESUMEN

At-wavelength metrology of X-ray optics plays a crucial role in evaluating the performance of optics under actual beamline operating conditions, enabling in situ diagnostics and optimization. Techniques utilizing a wavefront random modulator have gained increasing attention in recent years. However, accurately mapping the measured wavefront slope to a curved X-ray mirror surface when the modulator is downstream of the mirror has posed a challenge. To address this problem, an iterative method has been developed in this study. The results demonstrate a significant improvement compared with conventional approaches and agree with offline measurements obtained from optical metrology. We believe that the proposed method enhances the accuracy of at-wavelength metrology techniques, and empowers them to play a greater role in beamline operation and optics fabrication.

5.
Nat Ecol Evol ; 8(4): 717-728, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38383853

RESUMEN

Viruses are crucial in shaping soil microbial functions and ecosystems. However, studies on soil viromes have been limited in both spatial scale and biome coverage. Here we present a comprehensive synthesis of soil virome biogeographic patterns using the Global Soil Virome dataset (GSV) wherein we analysed 1,824 soil metagenomes worldwide, uncovering 80,750 partial genomes of DNA viruses, 96.7% of which are taxonomically unassigned. The biogeography of soil viral diversity and community structure varies across different biomes. Interestingly, the diversity of viruses does not align with microbial diversity and contrasts with it by showing low diversity in forest and shrubland soils. Soil texture and moisture conditions are further corroborated as key factors affecting diversity by our predicted soil viral diversity atlas, revealing higher diversity in humid and subhumid regions. In addition, the binomial degree distribution pattern suggests a random co-occurrence pattern of soil viruses. These findings are essential for elucidating soil viral ecology and for the comprehensive incorporation of viruses into soil ecosystem models.


Asunto(s)
Suelo , Virus , Suelo/química , Ecosistema , Viroma , Microbiología del Suelo , Ecología , Virus/genética
6.
Angew Chem Int Ed Engl ; 63(1): e202312923, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37971168

RESUMEN

Axially chiral open-chained olefins are an underexplored class of atropisomers, whose enantioselective synthesis represents a daunting challenge due to their relatively low racemization barrier. We herein report rhodium(I)-catalyzed hydroarylative cyclization of 1,6-diynes with three distinct classes of arenes, enabling highly enantioselective synthesis of a broad range of axially chiral 1,3-dienes that are conformationally labile (ΔG≠ (rac)=26.6-28.0 kcal/mol). The coupling reactions in each category proceeded with excellent enantioselectivity, regioselectivity, and Z/E selectivity under mild reaction conditions. Computational studies of the coupling of quinoline N-oxide system reveal that the reaction proceeds via initial oxidative cyclization of the 1,6-diyne to give a rhodacyclic intermediate, followed by σ-bond metathesis between the arene C-H bond and the Rh-C(vinyl) bond, with subsequent C-C reductive elimination being enantio-determining and turnover-limiting. The DFT-established mechanism is consistent with the experimental studies. The coupled products of quinoline N-oxides undergo facile visible light-induced intramolecular oxygen-atom transfer, affording chiral epoxides with complete axial-to-central chirality transfer.

7.
Environ Int ; 183: 108402, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38150804

RESUMEN

Choosing a suitable bioaerosol sampler for atmospheric microbial monitoring has been a challenge to researchers interested in environmental microbiology, especially during a pandemic. However, a comprehensive and integrated evaluation method to fully assess bioaerosol sampler performance is still lacking. Herein, we constructed a customized wind tunnel operated at 2-20 km/h wind speed to systematically and efficiently evaluate the performance of six frequently used samplers, where various aerosols, including Arizona test dust, bacterial spores, gram-positive and gram-negative bacteria, phages, and viruses, were generated. After 10 or 60 min of sampling, the physical and biological sampling efficiency and short or long-term sampling capabilities were determined by performing aerodynamic particle size analysis, live microbial culturing, and a qPCR assay. The results showed that AGI-30 and BioSampler impingers have good physical and biological sampling efficiencies for short-term sampling. However, their ability to capture aerosols at low concentrations is restricted. SASS 2300 and BSA-350 wet-wall cyclones had excellent enrichment ratios and high microbial cultivability in both short-term and long-term sampling; however, they were not suitable for quantitative studies of aerosols. Polycarbonate filter samplers showed outstanding performance in physical and long-term sampling but lacked the ability to maintain microbial activity, which can be improved by gelatin filter samplers. However, limitations remain for some fragile microorganisms, such as E. coli phage PhiX174 and coronavirus GX_P2V. In addition, the effects of wind speed and direction should be considered when sampling particles larger than 4 µm. This study provides an improved strategy and guidance for the characterization and selection of a bioaerosol sampler for better measurement and interpretation of collected ambient bioaerosols.


Asunto(s)
Exposición Profesional , Exposición Profesional/análisis , Escherichia coli , Antibacterianos/análisis , Monitoreo del Ambiente/métodos , Bacterias Gramnegativas , Bacterias Grampositivas , Aerosoles/análisis , Tamaño de la Partícula
8.
Opt Express ; 31(25): 41000-41013, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38087509

RESUMEN

For advanced X-ray sources such as synchrotron radiation facilities and X-ray free electron lasers, a smooth, structure-free beam on the far-field plane is usually strongly desired. The formation of the fine structures in far-field images downstream from imperfect optics must be understood. Although numerous studies have discussed the impacts on focused beams, there are still few quantitative theories for the impacts on beams in the far field. This article is an advance on our previous work, which discussed the uniformity of the intensity distribution in the far field. Here, a new theoretical approach is presented. It not only eases the assumptions needed to relate the fine structures to the wavefront curvature, but it also provides a quantitative estimation of the impacts of optical errors. The theoretical result is also verified by X-ray experiments.

9.
Nature ; 624(7992): 630-638, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38093012

RESUMEN

The COVID-19 pandemic has fostered major advances in vaccination technologies1-4; however, there are urgent needs for vaccines that induce mucosal immune responses and for single-dose, non-invasive administration4-6. Here we develop an inhalable, single-dose, dry powder aerosol SARS-CoV-2 vaccine that induces potent systemic and mucosal immune responses. The vaccine encapsulates assembled nanoparticles comprising proteinaceous cholera toxin B subunits displaying the SARS-CoV-2 RBD antigen within microcapsules of optimal aerodynamic size, and this unique nano-micro coupled structure supports efficient alveoli delivery, sustained antigen release and antigen-presenting cell uptake, which are favourable features for the induction of immune responses. Moreover, this vaccine induces strong production of IgG and IgA, as well as a local T cell response, collectively conferring effective protection against SARS-CoV-2 in mice, hamsters and nonhuman primates. Finally, we also demonstrate a mosaic iteration of the vaccine that co-displays ancestral and Omicron antigens, extending the breadth of antibody response against co-circulating strains and transmission of the Omicron variant. These findings support the use of this inhaled vaccine as a promising multivalent platform for fighting COVID-19 and other respiratory infectious diseases.


Asunto(s)
Vacunas contra la COVID-19 , Inmunidad Mucosa , Animales , Cricetinae , Humanos , Ratones , Administración por Inhalación , Aerosoles , Anticuerpos Antivirales/inmunología , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Antígenos Virales/inmunología , Toxina del Cólera , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Inmunidad Mucosa/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Nanopartículas , Polvos , Primates/virología , SARS-CoV-2/clasificación , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Vacunación , Cápsulas
10.
Exploration (Beijing) ; 3(3): 20220171, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37933384

RESUMEN

Diffuse alveolar damage (DAD) triggers neutrophilic inflammation in damaged tissues of the lung, but little is known about the distinct roles of tissue structural cells in modulating the recruitment of neutrophils to damaged areas. Here, by combining single-cell and spatial transcriptomics, and using quantitative assays, we systematically analyze inflammatory cell states in a mouse model of DAD-induced neutrophilic inflammation after aerosolized intratracheal inoculation with ricin toxin. We show that homeostatic resident fibroblasts switch to a hyper-inflammatory state, and the subsequent occurrence of a CXCL1-CXCR2 chemokine axis between activated fibroblasts (AFib) as the signal sender and neutrophils as the signal receiver triggers further neutrophil recruitment. We also identify an anatomically localized inflamed niche (characterized by a close-knit spatial intercellular contact between recruited neutrophils and AFib) in peribronchial regions that facilitate the pulmonary inflammation outbreak. Our findings identify an intricate interplay between hyper-inflammatory fibroblasts and neutrophils and provide an overarching profile of dynamically changing inflammatory microenvironments during DAD progression.

11.
Curr Microbiol ; 80(12): 371, 2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37838636

RESUMEN

Vibrio parahaemolyticus, the leading cause of bacterial seafood-associated gastroenteritis, can form biofilms. In this work, the gene expression profiles of V. parahaemolyticus during biofilm formation were investigated by transcriptome sequencing. A total of 183, 503, and 729 genes were significantly differentially expressed in the bacterial cells at 12, 24 and 48 h, respectively, compared with that at 6 h. Of these, 92 genes were consistently activated or repressed from 6 to 48 h. The genes involved in polar flagellum, chemotaxis, mannose-sensitive haemagglutinin type IV pili, capsular polysaccharide, type III secretion system 1 (T3SS1), T3SS2, thermostable direct hemolysin (TDH), type VI secretion system 1 (T6SS1) and T6SS2 were downregulated, whereas those involved in V. parahaemolyticus pathogenicity island (Vp-PAI) (except for T3SS2 and TDH) and membrane fusion proteins were upregulated. Three extracellular protease genes (vppC, prtA and VPA1071) and a dozen of outer membrane protein encoding genes were also significantly differentially expressed during biofilm formation. In addition, five putative c-di-GMP metabolism-associated genes were significantly differentially expressed, which may account for the drop in c-di-GMP levels after the beginning of biofilm formation. Moreover, many putative regulatory genes were significantly differentially expressed, and more than 1000 putative small non-coding RNAs were detected, suggesting that biofilm formation was tightly regulated by complex regulatory networks. The data provided a global view of gene expression profiles during biofilm formation, showing that the significantly differentially expressed genes were involved in multiple cellular pathways, including virulence, biofilm formation, metabolism, and regulation.


Asunto(s)
Vibriosis , Vibrio parahaemolyticus , Humanos , Transcriptoma , Vibrio parahaemolyticus/genética , Virulencia/genética , Factores de Virulencia/genética , Biopelículas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vibriosis/microbiología , Regulación Bacteriana de la Expresión Génica
12.
Adv Mater ; 35(51): e2304514, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37784226

RESUMEN

Bacterial pneumonia is the leading cause of death worldwide among all infectious diseases. However, currently available vaccines against fatal bacterial lung infections, e.g., pneumonic plague, are accompanied by limitations, including insufficient antigen-adjuvant co-delivery and inadequate immune stimulation. Therefore, there is an urgent requirement to develop next-generation vaccines to improve the interaction between antigen and adjuvant, as well as enhance the effects of immune stimulation. This study develops a novel amino-decorated mesoporous manganese silicate nanoparticle (AMMSN) loaded with rF1-V10 (rF1-V10@AMMSN) to prevent pneumonic plague. These results suggest that subcutaneous immunization with rF1-V10@AMMSN in a prime-boost strategy induces robust production of rF1-V10-specific IgG antibodies with a geometric mean titer of 315,844 at day 42 post-primary immunization, which confers complete protection to mice against 50 × LD50 of Yersinia pestis (Y. pestis) challenge via the aerosolized intratracheal route. Mechanistically, rF1-V10@AMMSN can be taken up by dendritic cells (DCs) and promote DCs maturation through activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway and production of type I interferon. This process results in enhanced antigen presentation and promotes rF1-V10-mediated protection against Y. pestis infection. This manganese-based nanoparticle vaccine represents a valuable strategy for combating fatal bacterial pneumonia.


Asunto(s)
Vacuna contra la Peste , Peste , Neumonía Bacteriana , Vacunas , Ratones , Animales , Peste/prevención & control , Nanovacunas , Manganeso , Antígenos Bacterianos/genética , Neumonía Bacteriana/prevención & control , Adyuvantes Inmunológicos , Proteínas Bacterianas
13.
J Am Chem Soc ; 145(39): 21554-21561, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37668596

RESUMEN

Carbon is a primary element to constitute organic molecules, while metal catalysis is a basic tool in organic synthesis. The establishment of a link between the ubiquitous carbon bonding and metal catalysis is thus a fundamentally important problem. However, there is yet no experimental example to introduce the role of carbon bonding in a metal catalysis process. Herein, we merged the topics of carbon bonding and metal catalysis together and demonstrated that a supramolecular carbon-bonding metal complex can not only give rise to catalytic activity but, more remarkably, direct structural-isomer selection events in gold-catalyzed reactions. The experimental results unveil the fact that the imposing of weak carbon-bonding interactions on a gold complex can alter the carbene as well as the Lewis acid property of these catalysts. These results illustrate a non-negligible role of weak carbon-bonding interactions in the modulation of metal catalysis. As such, carbon-bonding metal catalysis is suggested to be used as a routine tool not only in the development of reactions but more frequently in analyzing reaction processes in metal catalysis.

14.
Inorg Chem ; 62(29): 11372-11380, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37431607

RESUMEN

[n]Cycloparaphenylenes ([n]CPPs, n denotes the number of phenyl groups) are difficult to synthesize because of the strain related to their bent phenyl rings. In particular, the strain in [3]CPP is high enough to destroy the π electron delocalization, leading to the spontaneous structural transition to an energetically more stable "bond-shift" (BS) isomer ([3]BS). In this contribution, we propose to achieve [3]CPP by enhancing the π electron delocalization through hosting a guest metal atom. Our computations revealed that Sc could stabilize [3]CPP by forming the [Sc©[3]CPP]+ complex through the favorable π-Sc donation-backdonation interactions. Thermodynamically, the binding energy between the Sc atom and [3]CPP was -205.7 kcal/mol, which could well compensate not only the energy difference of 44.2 kcal/mol between [3]CPP and [3]BS but also the extremely high strain energy of 170.3 kcal/mol in [3]CPP. Simultaneously, the [Sc©[3]CPP]+ complex is stable up to 1500 K in dynamic simulations, suggesting its high viability in the synthesis.

15.
Environ Pollut ; 327: 121548, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37011779

RESUMEN

The response of soil microbes to heavy metal pollution provides a metric to evaluate the soil health and ecological risks associated with heavy metal contamination. However, a multitrophic level perspective of how soil microbial communities and their functions respond to long-term exposure of multiple heavy metals remains unclear. Herein, we examined variations in soil microbial (including protists and bacteria) diversity, functional guilds and interactions along a pronounced metal pollution gradient in a field surrounding an abandoned electroplating factory. Given the stressful soil environment resulting from extremely high heavy metal concentrations and low nutrients, beta diversity of protist increased, but that of bacteria decreased, at high versus low pollution sites. Additionally, the bacteria community showed low functional diversity and redundancy at the highly polluted sites. We further identified indicative genus and "generalists" in response to heavy metal pollution. Predatory protists in Cercozoa were the most sensitive protist taxa with respect to heavy metal pollution, whereas photosynthetic protists showed a tolerance for metal pollution and nutrient deficiency. The complexity of ecological networks increased, but the communication among the modules disappeared with increasing metal pollution levels. Subnetworks of tolerant bacteria displaying functional versatility (Blastococcus, Agromyces and Opitutus) and photosynthetic protists (microalgae) became more complex with increasing metal pollution levels, indicating their potential for use in bioremediation and restoration of abandoned industrial sites contaminated by heavy metals.


Asunto(s)
Metales Pesados , Microbiota , Contaminantes del Suelo , Galvanoplastia , Metales Pesados/toxicidad , Metales Pesados/análisis , Suelo , Bacterias , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Microbiología del Suelo
16.
Microbiome ; 11(1): 85, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085934

RESUMEN

BACKGROUND: Plants sustain intimate relationships with diverse microbes. It is well-recognized that these plant-associated microbiota shape individual performance and fitness of host plants, but much remains to be explored regarding how they exert their function and maintain their homeostasis. RESULTS: Here, using pink lady (Heterotis rotundifolia) as a study plant, we investigated the phenomenon of microbiota-mediated nitrogen fixation and elucidated how this process is steadily maintained in the root mucilage microhabitat. Metabolite and microbiota profiling showed that the aerial root mucilage is enriched in carbohydrates and diazotrophic bacteria. Nitrogen isotope-labeling experiments, 15N natural abundance, and gene expression analysis indicated that the aerial root-mucilage microbiota could fix atmospheric nitrogen to support plant growth. While the aerial root mucilage is a hotspot of nutrients, we did not observe high abundance of other environmental and pathogenic microbes inside. We further identified a fungus isolate in mucilage that has shown broad-spectrum antimicrobial activities, but solely allows the growth of diazotrophic bacteria. This "friendly" fungus may be the key driver to maintain nitrogen fixation function in the mucilage microhabitat. Video Abstract CONCLUSION: The discovery of new biological function and mucilage-habitat friendly fungi provides insights into microbial homeostasis maintenance of microenvironmental function and rhizosphere ecology.


Asunto(s)
Microbiota , Fijación del Nitrógeno , Humanos , Polisacáridos/metabolismo , Microbiota/genética , Bacterias/genética , Bacterias/metabolismo , Rizosfera , Plantas/metabolismo , Homeostasis , Raíces de Plantas/microbiología , Microbiología del Suelo
17.
Future Microbiol ; 18: 267-286, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36971082

RESUMEN

Background: Pneumonic plague is a fatal respiratory disease caused by Yersinia pestis. Time-course transcriptome analysis on the mechanism of pneumonic plague biphasic syndrome is lacking in the literature. Materials & methods: This study documented the disease course through bacterial load, histopathology, cytokine levels and flow cytometry. RNA-sequencing technology was used to investigate the global transcriptome profile of lung tissue in mice infected with Y. pestis. Results: Inflammation-related genes were significantly upregulated at 48 h post-infection, while genes related to cell adhesion and cytoskeletal structure were downregulated. Conclusion: NOD-like receptor and TNF signaling pathways play a plausible role in pneumonic plague biphasic syndrome and lung injury by controlling the activation and inhibition of the NF-κB signaling pathway.


Asunto(s)
Peste , Yersinia pestis , Ratones , Animales , Peste/microbiología , FN-kappa B/genética , FN-kappa B/metabolismo , Pulmón/microbiología , Yersinia pestis/genética , Yersinia pestis/metabolismo , Transducción de Señal , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
18.
Emerg Microbes Infect ; 12(1): 2191741, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36920800

RESUMEN

Pulmonary anthrax is the most fatal clinical form of anthrax and currently available injectable vaccines do not provide adequate protection against it. Hence, next-generation vaccines that effectively induce immunity against pulmonary anthrax are urgently needed. In the present study, we prepared an attenuated and low protease activity Bacillus anthracis strain A16R-5.1 by deleting five of its extracellular protease activity-associated genes and its lef gene through the CRISPR-Cas9 genome editing system. This mutant strain was then used to formulate a lethal toxin (LeTx)-free culture supernatant extract (CSE) anthrax vaccine, of which half was protective antigen (PA). We generated liquid, powder, and powder reconstituted formulations that could be delivered by aerosolized intratracheal inoculation. All of them induced strong humoral, cellular, and mucosal immune responses. The vaccines also produced LeTx neutralizing antibodies and conferred full protection against the lethal aerosol challenges of B. anthracis Pasteur II spores in mice. Compared to the recombinant PA vaccine, the CSE anthrax vaccine with equal PA content provided superior immunoprotection against pulmonary anthrax. The preceding results suggest that the CSE anthrax vaccine developed herein is suitable and scalable for use in inhalational immunization against pulmonary anthrax.


Asunto(s)
Vacunas contra el Carbunco , Carbunco , Bacillus anthracis , Ratones , Animales , Carbunco/prevención & control , Vacunas contra el Carbunco/genética , Antígenos Bacterianos/genética , Polvos , Bacillus anthracis/genética , Vacunas Sintéticas , Péptido Hidrolasas , Anticuerpos Antibacterianos
19.
Biomolecules ; 13(2)2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36830716

RESUMEN

USA300, a dominant clone of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA), is circulating globally and can cause necrotizing pneumonia with high morbidity and mortality. To further reveal the host anti-MRSA infection immune response, we established a mouse model of acute primary MRSA pneumonia challenged with aerosols of the USA300 clone. A time-course transcriptome analysis of the lungs collected at 0, 12, 24, 48 and 96 h post-infection (hpi) was conducted using RNA sequencing (RNA-seq) and multiple bioinformatic analysis methods. The change trend of histopathology and five innate immune cell (neutrophils, mononuclear cells, eosinophils, macrophages, DC cells) proportions in the lungs after infection was also examined. We observed a distinct acute pulmonary recovery process. A rapid initiation period of inflammation was present at 12 hpi, during which the IL-17 pathway dominantly mediated inflammation and immune defense. The main stages of host inflammatory response occurred at 24 and 48 hpi, and the regulation of interferon activation and macrophage polarization played an important role in the control of inflammatory balance at this stage. At 96 hpi, cellular proliferation processes associated with host repair were observed, as well as adaptive immunity and complement system responses involving C1q molecules. More importantly, the data provide new insight into and identify potential functional genes involved in the checks and balances occurring between host anti-inflammatory and proinflammatory responses. To the best of our knowledge, this is the first study to investigate transcriptional responses throughout the inflammatory recovery process in the lungs after MRSA infection. Our study uncovers valuable research targets for key regulatory mechanisms underlying the pathogenesis of MRSA lung infections, which may help to develop novel treatment strategies for MRSA pneumonia.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Neumonía , Infecciones Estafilocócicas , Ratones , Animales , Staphylococcus aureus Resistente a Meticilina/genética , Aerosoles y Gotitas Respiratorias , Pulmón/patología , Perfilación de la Expresión Génica , Inflamación/patología , Células Clonales
20.
J Org Chem ; 88(5): 2750-2757, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36790843

RESUMEN

Factors controlling the regioselectivity in alkene hydrocupration were computationally investigated using energy decomposition analysis. The results demonstrate that the Markovnikov-selective hydrocupration with electronically activated mono-substituted olefins is mostly affected by the destabilizing Pauli repulsion, which is due to the electron delocalization effect. The anti-Markovnikov-selective hydrocupration with 1,1-dialkyl-substituted terminal olefins is dominated by the repulsive electrostatic interactions, which is because of the unequal π electron distribution caused by the induction effect of alkyl substituents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...