Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1426832, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290742

RESUMEN

High-temperature (HT) stress can induce male sterility in wheat; however, the underlying mechanisms remain poorly understood. This study examined proteomic alterations across three developmental stages between normal and HT-induced male-sterile (HT-ms) anthers in wheat. Utilizing tandem mass tags-based proteomics, we identified 2532 differentially abundant proteins (DAPs): 27 in the tetrad stage, 157 in the binuclear stage, and 2348 in the trinuclear stage. Analyses through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways indicated significant enrichment of these DAPs in seven pathways, namely phenylpropanoid biosynthesis, flavonoid biosynthesis, sphingolipid metabolism, MAPK signaling pathway, starch and sucrose metabolism, response to heat, and response to reactive oxygen species (ROS). Our results indicated the downregulation of DAPs associated with phenylpropanoid biosynthesis and starch and sucrose metabolism, which aligns with anther indehiscence and the lack of starch in HT-ms anthers. By contrast, DAPs in the ROS pathway were upregulated, which aligns with excessive ROS accumulation in HT-ms anthers. Additionally, we conducted protein-protein interaction analysis for the DAPs of these pathways, identifying 15 hub DAPs. The abundance of these hub proteins was confirmed through qRT-PCR, assessing mRNA expression levels of the corresponding transcripts. Collectively, these results offer insights into the molecular mechanisms underlying HT-induced male sterility in wheat at the proteomic level, providing a valuable resource for further research in plant sexual reproduction.

2.
Ecol Evol ; 13(2): e9813, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36789341

RESUMEN

The Geometroidea is a large superfamily of Lepidoptera in species composition and contains numerous economically important pest species that cause great loss in crop and forest production. However, understanding of mitogenomes remains limited due to relatively fewer mitogenomes previously reported for this megadiverse group. Here, we sequenced and annotated nine mitogenomes for Geometridae and further analyzed the mitogenomic evolution and phylogeny of the whole superfamily. All nine mitogenomes contained 37 mitochondrial genes typical in insects, and gene organization was conserved except for Somatina indicataria. In S. indicataria, the positions of two tRNAs were rearranged. The trnR was located before trnA instead of after trnA typical in Lepidoptera, whereas the trnE was detected rarely on the minority strand (N-strand). This trnR-trnA-trnN-trnS1-trnE-trnF newly recognized in S. indicataria represents the first gene rearrangement reported for Geometroidea and is also unique in Lepidoptera. Besides, nucleotide composition analyses showed little heterogeneity among the four geometrid subfamilies involved herein, and overall, nad6 and atp8 have higher nucleotide diversity and Ka/Ks rate in Geometridae. In addition, the taxonomic assignments of the nine species, historically defined by morphological studies, were confirmed by various phylogenetic analyses based on the hitherto most extensive mitogenomic sampling in Geometroidea.

3.
Plants (Basel) ; 11(9)2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35567157

RESUMEN

Triacylglycerol (TAG) is the most important storage lipid for oil plant seeds. Diacylglycerol acyltransferases (DGATs) are a key group of rate-limiting enzymes in the pathway of TAG biosynthesis. In plants, there are three types of DGATs, namely, DGAT1, DGAT2 and DGAT3. Brassica napus, an allotetraploid plant, is one of the most important oil plants in the world. Previous studies of Brassica napus DGATs (BnaDGATs) have mainly focused on BnaDGAT1s. In this study, four DGAT1s, four DGAT2s and two DGAT3s were identified and cloned from B. napus ZS11. The analyses of sequence identity, chromosomal location and collinearity, phylogenetic tree, exon/intron gene structures, conserved domains and motifs, and transmembrane domain (TMD) revealed that BnaDGAT1, BnaDGAT2 and BnaDGAT3 were derived from three different ancestors and shared little similarity in gene and protein structures. Overexpressing BnaDGATs showed that only four BnaDGAT1s can restore TAG synthesis in yeast H1246 and promote the accumulation of fatty acids in yeast H1246 and INVSc1, suggesting that the three BnaDGAT subfamilies had greater differentiation in function. Transcriptional analysis showed that the expression levels of BnaDGAT1s, BnaDGAT2s and BnaDGAT3s were different during plant development and under different stresses. In addition, analysis of fatty acid contents in roots, stems and leaves under abiotic stresses revealed that P starvation can promote the accumulation of fatty acids, but no obvious relationship was shown between the accumulation of fatty acids with the expression of BnaDGATs under P starvation. This study provides an extensive evaluation of BnaDGATs and a useful foundation for dissecting the functions of BnaDGATs in biochemical and physiological processes.

4.
BMC Plant Biol ; 21(1): 598, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34915841

RESUMEN

BACKGROUND: Phosphatidylinositol 4 phosphate 5-kinase (PIP5K) plays a key enzyme role in the inositol signal transduction system and has essential functions in plants in terms of growth, development, and stress responses. However, systematic studies on the wheat PIP5K gene family and its relation to male sterility have not been reported yet. RESULTS: Sixty-four TaPIP5K genes were identified. The TaPIP5K genes contained similar gene structures and conserved motifs on the same branches of the evolutionary tree, and their cis-regulatory elements were related to MeJA-responsiveness. Furthermore, 49 pairs of collinearity genes were identified and mainly subjected to purification selection during evolution. Synteny analyses showed that some PIP5K genes in wheat and the other four species shared a relatively conserved evolutionary process. The expression levels of many conservative TaPIP5K genes in HT-ms anthers were significantly lower than that in Normal anthers. In addition, HT-ms anthers have no dehiscence, and levels of OPDA and JA-ILE are significantly lower at the trinucleus stage. CONCLUSION: These results indicate that the PIP5K gene family may be associated with male sterility induced by HT, and the reduction of JA-ILE levels and the abnormal levels of these genes expression may be one reason for the HT-ms anthers having no dehiscence, ultimately leading to the abortion of the anthers.


Asunto(s)
Flores/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Infertilidad Vegetal/genética , Triticum/fisiología , Mapeo Cromosómico , Cromosomas de las Plantas , Fertilidad , Flores/enzimología , Flores/fisiología , Duplicación de Gen , Perfilación de la Expresión Génica , Genes de Plantas , Calor , Familia de Multigenes , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Sintenía , Triticum/enzimología , Triticum/genética
5.
Front Plant Sci ; 12: 727966, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34759937

RESUMEN

Global warming will have a negative effect on agricultural production as high temperature (HT) stress can seriously threaten plant growth and reproduction. Male sterility caused by HT may be exploited by the creation of a male-sterile line, which has great potential for application in crop heterosis. Therefore, it is important to understand the molecular mechanisms of anther abortion induced by HT in wheat, which remain unclear at present. In this study, we performed phenotype improve language in the abstract and comparative transcriptome analysis of the male sterile anthers induced by HT in wheat. Compared with Normal anthers, the cytological analysis indicated that HT-induced male sterile anthers were smaller and had no starch accumulation in pollen grains, which is consistent with the results observed by scanning electron microscopy (SEM). The 9601 differentially expressed genes (DEGs) identified by transcriptome sequencing compared with the Normal anthers were noticeably involved in the following pathways: starch and sucrose metabolism, phosphatidylinositol (PI) signaling system, peroxidase activity and response to oxidative stress, and heme binding. In addition, TUNEL assays were performed and the results further confirmed the excessive accumulation of reactive oxygen species (ROS) in sterile anthers. Moreover, a total of 38 hub genes were obtained from the protein-protein interaction network analysis of these pathways, including genes, for example, heat shock protein 90 (HSP90), thioredoxin-like protein 1, peroxidase (POD), calreticulin, UDP glucose pyrophosphorylase (UGPase), sucrose synthase, phosphatidylinositol-4-phosphate 5-Kinase (PIP5K), cytochrome c, and Cystathionine beta-synthase X6-like (CBSX6-like). These findings provide insights for predicting the functions of the candidate genes, and the comprehensive analysis of our results is helpful for studying the abortive interaction mechanism induced by HT in wheat.

6.
Insects ; 12(11)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34821839

RESUMEN

The Pyraloidea is one of the species-rich superfamilies of Lepidoptera and contains numerous economically important pest species that cause great loss in crop production. Here, we sequenced and annotated nine complete mitogenomes for Pyraloidea, and further performed various phylogenetic analyses, to improve our understanding of mitogenomic evolution and phylogeny of this superfamily. The nine mitogenomes were circular, double-stranded molecules, with the lengths ranging from 15,214 bp to 15,422 bp, which are comparable to other reported pyraloid mitogenomes in size. Gene content and arrangement were highly conserved and are typical of Lepidoptera. Based on the hitherto most extensive mitogenomic sampling, our various resulting trees showed generally congruent topologies among pyraloid subfamilies, which are almost in accordance with previous multilocus studies, indicating the suitability of mitogenomes in inferring high-level relationships of Pyraloidea. However, nodes linking subfamilies in the "non-PS clade" were not completely resolved in terms of unstable topologies or low supports, and future investigations are needed with increased taxon sampling and molecular data. Unexpectedly, Orybina Snellen, represented in a molecular phylogenetic investigation for the first time, was robustly placed as basal to the remaining Pyralidae taxa across our analyses, rather than nested in Pyralinae of Pyralidae as morphologically defined. This novel finding highlights the need to reevaluate Orybina monophyly and its phylogenetic position by incorporating additional molecular and morphological evidence.

7.
PeerJ ; 9: e11371, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33987032

RESUMEN

The sugar transporter protein (STP) plays a crucial role in regulating plant growth and stress tolerance. We performed genome-wide identification and expression analysis of the STP gene family to investigate the STPSs' potential roles in the growth of wheat seedlings under stress. Here, a total of 81 TaSTP genes containing the Sugar_tr conserved motif were identified within the wheat genome. Bioinformatic studies including phylogenetic tree, chromosome position, and tandem repeat were performed to analyze the identified genes. The 81 TaSTP genes can be classified into five main groups according to their structural and phylogenetic features, with several subgroups, which were located separately on chromosomes A, B, and D. Moreover, six gene clusters were formed with more than three genes each. The results of three comparative syntenic maps of wheat associated with three representative species suggested that STP genes have strong relationships in monocots. qRT-PCR analysis confirmed that most TaSTP genes displayed different expression profiles after seedlings were subjected to six days of different stress (10% PEG6000, 150 mM NaCl, and their combination, respectively), suggesting that these genes may be involved in regulating plant growth and stress tolerance. In conclusion, 81 TaSTP genes were identified and their expressions changed under stress, indicating TaSTP's potential roles in wheat growth monosaccharide distribution is regulated.

8.
Genes Genomics ; 43(8): 885-896, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33884569

RESUMEN

BACKGROUND: Paeonia ostii seeds were identified as novel sources of edible plant oil with a high proportion of α-linolenic acid, a type of n-3 fatty acid with many health benefits. Due to the unreliability of seed oil content and quality, it is necessary to discover the mechanism underlying lipid biosynthesis in Paeonia ostii seeds. OBJECTIVES: This study aimed to identify the key genes involved in lipid biosynthesis in Paeonia ostii seeds by analyzing the relationship among the seed characteristics and the expression patterns of lipid genes in Paeonia ostii during seed development. METHODS: Preliminary research on Paeonia ostii seed development was carried out from 10 days after pollination until maturity, focusing on phenology, oil content and lipid profiles. In addition, we investigated the spatiotemporal expression of 36 lipid biosynthetic genes in Paeonia ostii by using quantitative real-time PCR. RESULTS: The results suggested that the development of Paeonia ostii seeds from pollination to maturity could be divided into three periods. The 36 lipid genes showed various spatiotemporal expression patterns and five gene groups with distinct temporal patterns during seed development were identified by clustering analysis of expression data. Furthermore, the relationships between gene expression and lipid/fatty acid accumulation and some candidate key lipid genes were discussed. CONCLUSIONS: This study provided the global patterns of fatty acid and lipid biosynthesis-related gene expression, which are critical to understanding the molecular basis of lipid biosynthesis and identifying the lipid accumulation rate-limiting genes during seed development.


Asunto(s)
Ácidos Grasos/genética , Lípidos/biosíntesis , Paeonia/genética , Semillas/genética , Regulación de la Expresión Génica de las Plantas/genética , Lípidos/genética , Lipogénesis/genética , Paeonia/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Transcriptoma/genética
9.
Mol Biol Rep ; 46(6): 6003-6011, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31446531

RESUMEN

Paeonia ostii seeds have recently been identified as a new source of α-linolenic acid in China. Studying the gene expression patterns of unsaturated fatty acid-related genes would be helpful for understanding the mechanism of α-linolenic acid accumulation. Quantitative real-time polymerase chain reaction (qRT-PCR) is a useful method for reliably evaluating gene expression, and it is necessary to select reliable reference genes for data normalization in qRT-PCR analysis. In this study, we evaluated the expression stability of 12 candidate reference genes using four mathematical algorithms (∆Ct, BestKeeper, NormFinder, and geNorm). The web-based tool RefFinder was used to integrate the results and to provide a comprehensive ranking order. The expression stability ranking orders of reference genes were different caculated by these four algorithms, and the ranking order analyzed by the RefFinder was UBQ > Tip41 > UCE > EF-1α > α-TUB > PP2A > ACT > GAPDH > SAM > CYP > ß-TUB > 18S at the different seed development stages, and UBQ > Tip41 > EF-1α > α-TUB > PP2A > UCE > GAPDH > SAM > ACT > CYP > 18S > ß-TUB in P. ostii tissues. UBQ and Tip41 are the two most stable whereas 18S and ß-TUB are the two least stable reference genes for gene expression in various tissues and seeds at different developmental stages in P. ostii.


Asunto(s)
Perfilación de la Expresión Génica/normas , Paeonia/genética , Estándares de Referencia , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/normas
10.
Cells ; 8(5)2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121904

RESUMEN

Phosphorus (P) deficiency is one of the main growth-limiting factors for plants. However, arbuscular mycorrhizal (AM) symbiosis can significantly promote P uptake. Generally, PHT1 transporters play key roles in plants' P uptake, and thus, PHT1 genes have been investigated in some plants, but the regulation and functions of these genes in wheat (TaPHT1) during AM symbiosis have not been studied in depth. Therefore, a comprehensive analysis of TaPHT1 genes was performed, including sequence, phylogeny, cis-elements, expression, subcellular localization and functions, to elucidate their roles in AM-associated phosphate transport and immunity. In total, 35 TaPHT1s were identified in the latest high-quality bread wheat genome, 34 of which were unevenly distributed on 13 chromosomes, and divided into five groups. Sequence analysis indicated that there are 11 types of motif architectures and five types of exon-intron structures in the TaPHT1 family. Duplication mode analysis indicated that the TaPHT1 family has expanded mainly through segmental and tandem duplication events, and that all duplicated gene pairs have been under purifying selection. Transcription analysis of the 35 TaPHT1s revealed that not only known the mycorrhizal-specific genes TaPht-myc, TaPT15-4B (TaPT11) and TaPT19-4D (TaPT10), but also four novel mycorrhizal-specific/inducible genes (TaPT3-2D, TaPT11-4A, TaPT29-6A, and TaPT31-7A) are highly up-regulated in AM wheat roots. Furthermore, the mycorrhizal-specific/inducible genes are significantly induced in wheat roots at different stages of infection by colonizing fungi. Transient Agrobacterium tumefaciens-mediated transformation expression in onion epidermal cells showed that TaPT29-6A is a membrane-localized protein. In contrast to other AM-specific/inducible PHT1 genes, TaPT29-6A is apparently required for the symbiotic and direct Pi pathway. TaPT29-6A-silenced lines exhibited reduced levels of AM fungal colonization and arbuscules, but increased susceptibility to biotrophic, hemi-biotrophic and necrotrophic pathogens. In conclusion, TaPT29-6A was not only essential for the AM symbiosis, but also played vital roles in immunity.


Asunto(s)
Micorrizas/metabolismo , Proteínas de Transporte de Fosfato/genética , Fosfatos/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Triticum/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Simbiosis/fisiología , Triticum/metabolismo
11.
Appl Biochem Biotechnol ; 180(8): 1542-1558, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27544774

RESUMEN

In the present study, a chi gene from Trichoderma asperellum, designated Tachi, was cloned and functionally characterized in soybean. Firstly, the effects of sodium thiosulfate on soybean Agrobacterium-mediated genetic transformation with embryonic tip regeneration system were investigated. The transformation frequency was improved by adding sodium thiosulfate in co-culture medium for three soybean genotypes. Transgenic soybean plants with constitutive expression of Tachi showed increased resistance to Sclerotinia sclerotiorum compared to WT plants. Meanwhile, overexpression of Tachi in soybean exhibited increased reactive oxygen species (ROS) level as well as peroxidase (POD) and catalase (SOD) activities, decreased malondialdehyde (MDA) content, along with diminished electrolytic leakage rate after S. sclerotiorum inoculation. These results suggest that Tachi can improve disease resistance in plants by enhancing ROS accumulation and activities of ROS scavenging enzymes and then diminishing cell death. Therefore, Tachi represents a candidate gene with potential application for increasing disease resistance in plants.


Asunto(s)
Quitinasas/metabolismo , Resistencia a la Enfermedad/genética , Glycine max/genética , Glycine max/inmunología , Enfermedades de las Plantas/inmunología , Trichoderma/enzimología , Agrobacterium/metabolismo , Secuencia de Aminoácidos , Ascomicetos/efectos de los fármacos , Ascomicetos/fisiología , Muerte Celular/efectos de los fármacos , Quitinasas/química , Quitinasas/genética , Clonación Molecular , Resistencia a la Enfermedad/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Malondialdehído/metabolismo , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Peroxidasas/metabolismo , Filogenia , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Glycine max/citología , Glycine max/microbiología , Superóxido Dismutasa/metabolismo , Tiosulfatos/farmacología , Transformación Genética/efectos de los fármacos
12.
Front Plant Sci ; 6: 428, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26106404

RESUMEN

Tomato Verticillium wilt is a soil-borne vascular disease caused by the necrotrophic fungus Verticillium dahliae. Although some understanding of plant defense mechanisms against V. dahliae infection has been gained for incompatible interactions, including identification of inducible resistant genes and defense signaling pathways, the genes and signaling pathways involved in the compatible interaction remain unclear. To investigate the molecular basis of the compatible interaction between tomato and V. dahliae, transcriptomes of V. dahliae infected tomatoes were compared to those of a control group. A total of approximately 25 million high-quality reads were generated by means of the RNA sequencing (RNA-seq) method. The sequence reads were aligned to the tomato reference genome and analyzed to measure gene expression levels, and to identify alternative splicing events. Comparative analysis between the two samples revealed 1,953 significantly differentially expressed genes (DEGs), including 1,281 up-regulated and 672 down-regulated genes. The RNA-Seq output was confirmed using RT-qPCR for 10 selected genes. The Nr, Swiss-Prot, Gene Ontology (GO), Clusters of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to annotate DEG functions. Of the 1,953 DEGs identified, 1,953, 1,579, 1,739, 862, and 380 were assigned by Nr, Swiss-Prot, GO, COG, and KEGG, respectively. The important functional groups identified via GO and COG enrichment were those responsible for fundamental biological regulation, secondary metabolism, and signal transduction. Of DEGs assigned to 87 KEGG pathways, most were associated with phenylpropanoid metabolism and plant-pathogen interaction pathways. Most of the DEGs involved in these two pathways were up-regulated, and may be involved in regulating the tomato-V. dahliae compatible interaction. The results will help to identify key susceptible genes and contribute to a better understanding of the mechanisms of tomato susceptible response to V. dahliae.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA