Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 9(10)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775155

RESUMEN

Physician-scientists play a crucial role in advancing medical knowledge and patient care, yet the long periods of time required to complete training may impede expansion of this workforce. We examined the relationship between postgraduate training and time to receipt of NIH or Veterans Affairs career development awards (CDAs) for physician-scientists in internal medicine. Data from NIH RePORTER were analyzed for internal medicine residency graduates who received specific CDAs (K08, K23, K99, or IK2) in 2022. Additionally, information on degrees and training duration was collected. Internal medicine residency graduates constituted 19% of K awardees and 28% of IK2 awardees. Of MD-PhD internal medicine-trained graduates who received a K award, 92% received a K08 award; of MD-only graduates who received a K award, a majority received a K23 award. The median time from medical school graduation to CDA was 9.6 years for K awardees and 10.2 years for IK2 awardees. The time from medical school graduation to K or IK2 award was shorter for US MD-PhD graduates than US MD-only graduates. We propose that the time from medical school graduation to receipt of CDAs must be shortened to accelerate training and retention of physician-scientists.


Asunto(s)
Educación de Postgrado en Medicina , Medicina Interna , Humanos , Medicina Interna/educación , Estados Unidos , Internado y Residencia/estadística & datos numéricos , Investigación Biomédica/educación , Médicos/estadística & datos numéricos , Investigadores/estadística & datos numéricos , Investigadores/educación , Factores de Tiempo , Distinciones y Premios , National Institutes of Health (U.S.) , United States Department of Veterans Affairs , Masculino , Femenino
2.
Elife ; 122023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37782020

RESUMEN

The growing complexities of clinical medicine and biomedical research have clouded the career path for physician-scientists. In this perspective piece, we address one of the most opaque career stage transitions along the physician-scientist career path, the transition from medical school to research-focused internal medicine residency programs, or physician-scientist training programs (PSTPs). We present the perspectives of medical scientist training program (MSTP) and PSTP directors on critical features of PSTPs that can help trainees proactively align their clinical and scientific training for successful career development. We aim to provide both trainees and MSTP directors with a conceptual framework to better understand and navigate PSTPs. We also offer interview-specific questions to help trainees gather data and make informed decisions in choosing a residency program that best supports their career.


Asunto(s)
Investigación Biomédica , Internado y Residencia , Médicos , Humanos , Educación de Postgrado , Investigación Biomédica/educación , Selección de Profesión
3.
JCI Insight ; 7(6)2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35315364

RESUMEN

Postgraduate physician-scientist training programs (PSTPs) enhance the experiences of physician-scientist trainees following medical school graduation. PSTPs usually span residency and fellowship training, but this varies widely by institution. Applicant competitiveness for these programs would be enhanced, and unnecessary trainee anxiety relieved, by a clear understanding of what factors define a successful PSTP matriculant. Such information would also be invaluable to PSTP directors and would allow benchmarking of their admissions processes with peer programs. We conducted a survey of PSTP directors across the US to understand the importance they placed on components of PSTP applications. Of 41 survey respondents, most were from internal medicine and pediatrics residency programs. Of all components in the application, two elements were considered very important by a majority of PSTP directors: (a) having one or more first-author publications and (b) the thesis advisor's letter. Less weight was consistently placed on factors often considered more relevant for non-physician-scientist postgraduate applicants - such as US Medical Licensing Examination scores, awards, and leadership activities. The data presented here highlight important metrics for PSTP applicants and directors and suggest that indicators of scientific productivity and commitment to research outweigh traditional quantitative measures of medical school performance.


Asunto(s)
Internado y Residencia , Médicos , Niño , Becas , Humanos , Investigadores , Encuestas y Cuestionarios
4.
Curr Biol ; 31(12): R803-R806, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34157268

RESUMEN

In a C. elegans model of host-microbiome interactions, interrogation of a genetically diverse panel of host strains with a defined, complex bacterial community reveals an important role for a conserved insulin-like signaling pathway in shaping the phylogenetic composition of the gut microbiome.


Asunto(s)
Insulina , Microbiota , Animales , Caenorhabditis elegans , Filogenia , Transducción de Señal
5.
Genetics ; 216(4): 837-878, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33268389

RESUMEN

Caenorhabditis elegans survives on ephemeral food sources in the wild, and the species has a variety of adaptive responses to starvation. These features of its life history make the worm a powerful model for studying developmental, behavioral, and metabolic starvation responses. Starvation resistance is fundamental to life in the wild, and it is relevant to aging and common diseases such as cancer and diabetes. Worms respond to acute starvation at different times in the life cycle by arresting development and altering gene expression and metabolism. They also anticipate starvation during early larval development, engaging an alternative developmental program resulting in dauer diapause. By arresting development, these responses postpone growth and reproduction until feeding resumes. A common set of signaling pathways mediates systemic regulation of development in each context but with important distinctions. Several aspects of behavior, including feeding, foraging, taxis, egg laying, sleep, and associative learning, are also affected by starvation. A variety of conserved signaling, gene regulatory, and metabolic mechanisms support adaptation to starvation. Early life starvation can have persistent effects on adults and their descendants. With its short generation time, C. elegans is an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans. This review provides a comprehensive overview of starvation responses throughout the C. elegans life cycle.


Asunto(s)
Envejecimiento/genética , Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Estadios del Ciclo de Vida , Inanición/genética , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo
6.
Elife ; 92020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33063667

RESUMEN

Signaling molecules derived from attachment of diverse metabolic building blocks to ascarosides play a central role in the life history of C. elegans and other nematodes; however, many aspects of their biogenesis remain unclear. Using comparative metabolomics, we show that a pathway mediating formation of intestinal lysosome-related organelles (LROs) is required for biosynthesis of most modular ascarosides as well as previously undescribed modular glucosides. Similar to modular ascarosides, the modular glucosides are derived from highly selective assembly of moieties from nucleoside, amino acid, neurotransmitter, and lipid metabolism, suggesting that modular glucosides, like the ascarosides, may serve signaling functions. We further show that carboxylesterases that localize to intestinal organelles are required for the assembly of both modular ascarosides and glucosides via ester and amide linkages. Further exploration of LRO function and carboxylesterase homologs in C. elegans and other animals may reveal additional new compound families and signaling paradigms.


Asunto(s)
Caenorhabditis elegans/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Lisosomas/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Hidrolasas de Éster Carboxílico/genética , Glucósidos/metabolismo , Redes y Vías Metabólicas , Orgánulos/metabolismo , Alineación de Secuencia
8.
Sci Adv ; 5(12): eaax0292, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31840061

RESUMEN

The mechanistic basis for the biogenesis of peptide hormones and growth factors is poorly understood. Here, we show that the conserved endoplasmic reticulum membrane translocon-associated protein α (TRAPα), also known as signal sequence receptor 1, plays a critical role in the biosynthesis of insulin. Genetic analysis in the nematode Caenorhabditis elegans and biochemical studies in pancreatic ß cells reveal that TRAPα deletion impairs preproinsulin translocation while unexpectedly disrupting distal steps in insulin biogenesis including proinsulin processing and secretion. The association of common intronic single-nucleotide variants in the human TRAPα gene with susceptibility to type 2 diabetes and pancreatic ß cell dysfunction suggests that impairment of preproinsulin translocation and proinsulin trafficking may contribute to the pathogenesis of type 2 diabetes.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Unión al Calcio/metabolismo , Insulina/biosíntesis , Glicoproteínas de Membrana/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Péptidos/metabolismo , Animales , Estrés del Retículo Endoplásmico , Insulina/metabolismo , Secreción de Insulina , Precursores de Proteínas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo
9.
JCI Insight ; 3(23)2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30518696

RESUMEN

There is growing concern that the physician-scientist is endangered due to a leaky training pipeline and prolonged time to scientific independence (1). The NIH Physician-Scientist Workforce Working Group has concluded that as many as 1,000 individuals will need to enter the pipeline each year to sustain the workforce (2). Moreover, surveys of postgraduate training programs document considerable variability in disposition and infrastructure (3). Programs can be broadly grouped into two classes: physician-scientist training programs (PSTPs) that span residency and fellowship training, and research-in-residency programs (RiRs), which are limited to residency but trainees are able to match into PSTPs upon transitioning to fellowship (Figure 1). Funding sources for RiRs and PSTPs are varied and include NIH KL2 and T32 awards, charitable foundations, philanthropy, and institutional support. Furthermore, standards for research training and tools for evaluating programmatic success are lacking. Here, we share consensus generated from iterative workshops hosted by the Alliance of Academic Internal Medicine (AAIM) and the student-led American Physician Scientists Association (APSA).


Asunto(s)
Investigación Biomédica/educación , Educación Médica , Educación , Médicos , Investigadores , Sociedades Médicas , Distinciones y Premios , Selección de Profesión , Organizaciones de Beneficencia , Educación de Postgrado en Medicina , Fundaciones , Humanos , National Institutes of Health (U.S.) , Estudiantes de Medicina , Encuestas y Cuestionarios , Apoyo a la Formación Profesional , Estados Unidos , Recursos Humanos
10.
Development ; 144(7): 1273-1282, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28209779

RESUMEN

Animals change developmental fates in response to external cues. In the nematode Caenorhabditis elegans, unfavorable environmental conditions induce a state of diapause known as dauer by inhibiting the conserved DAF-2 insulin-like signaling (ILS) pathway through incompletely understood mechanisms. We have previously established a role for the C. elegans dosage compensation protein DPY-21 in the control of dauer arrest and DAF-2 ILS. Here, we show that the histone H4 lysine 20 methyltransferase SET-4, which also influences dosage compensation, promotes dauer arrest in part by repressing the X-linked ins-9 gene, which encodes a new agonist insulin-like peptide (ILP) expressed specifically in the paired ASI sensory neurons that are required for dauer bypass. ins-9 repression in dauer-constitutive mutants requires DPY-21, SET-4 and the FoxO transcription factor DAF-16, which is the main target of DAF-2 ILS. By contrast, autosomal genes encoding major agonist ILPs that promote reproductive development are not repressed by DPY-21, SET-4 or DAF-16/FoxO. Our results implicate SET-4 as a sensory rheostat that reinforces developmental fates in response to environmental cues by modulating autocrine and paracrine DAF-2 ILS.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/crecimiento & desarrollo , Ambiente , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Plasticidad Neuronal , Células Receptoras Sensoriales/fisiología , Animales , Caenorhabditis elegans/genética , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genes Ligados a X , Larva/metabolismo , Masculino , Modelos Biológicos , Mutación/genética , Caracteres Sexuales , Transcriptoma/genética
11.
G3 (Bethesda) ; 6(6): 1751-6, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27172199

RESUMEN

Metazoan introns contain a polypyrimidine tract immediately upstream of the AG dinucleotide that defines the 3' splice site. In the nematode Caenorhabditis elegans, 3' splice sites are characterized by a highly conserved UUUUCAG/R octamer motif. While the conservation of pyrimidines in this motif is strongly suggestive of their importance in pre-mRNA splicing, in vivo evidence in support of this is lacking. In an N-ethyl-N-nitrosourea (ENU) mutagenesis screen in Caenorhabditis elegans, we have isolated a strain containing a point mutation in the octamer motif of a 3' splice site in the daf-12 gene. This mutation, a single base T-to-G transversion at the -5 position relative to the splice site, causes a strong daf-12 loss-of-function phenotype by abrogating splicing. The resulting transcript is predicted to encode a truncated DAF-12 protein generated by translation into the retained intron, which contains an in-frame stop codon. Other than the perfectly conserved AG dinucleotide at the site of splicing, G at the -5 position of the octamer motif is the most uncommon base in C. elegans 3' splice sites, occurring at closely paired sites where the better match to the splicing consensus is a few bases downstream. Our results highlight both the biological importance of the highly conserved -5 uridine residue in the C. elegans 3' splice site octamer motif as well as the utility of using ENU as a mutagen to study the function of polypyrimidine tracts and other AU- or AT-rich motifs in vivo.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Etilnitrosourea/toxicidad , Intrones , Mutagénesis/efectos de los fármacos , Sitios de Empalme de ARN , Animales , Secuencia de Bases , Caenorhabditis elegans/metabolismo , Mapeo Cromosómico , Mutación , Motivos de Nucleótidos , Fenotipo , Polimorfismo de Nucleótido Simple , Unión Proteica , Factores de Empalme de ARN/metabolismo , Eliminación de Secuencia
12.
G3 (Bethesda) ; 6(2): 351-6, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26628482

RESUMEN

Chromoanasynthesis is a recently discovered phenomenon in humans with congenital diseases that is characterized by complex genomic rearrangements (CGRs) resulting from aberrant repair of catastrophic chromosomal damage. How these CGRs are induced is not known. Here, we describe the structure and function of dpDp667, a causative CGR that emerged from a Caenorhabditis elegans dauer suppressor screen in which animals were treated with the point mutagen N-ethyl-N-nitrosourea (ENU). dpDp667 comprises nearly 3 Mb of sequence on the right arm of the X chromosome, contains three duplications and one triplication, and is devoid of deletions. Sequences from three out of the four breakpoint junctions in dpDp667 reveal microhomologies that are hallmarks of chromoanasynthetic CGRs. Our findings suggest that environmental insults and physiological processes that cause point mutations may give rise to chromoanasynthetic rearrangements associated with congenital disease. The relatively subtle phenotype of animals harboring dpDp667 suggests that the prevalence of CGRs in the genomes of mutant and/or phenotypically unremarkable animals may be grossly underestimated.


Asunto(s)
Caenorhabditis elegans/genética , Reordenamiento Génico , Genoma de los Helmintos , Genómica , Mutagénesis , Animales , Caenorhabditis elegans/efectos de los fármacos , Puntos de Rotura del Cromosoma , Etilnitrosourea/toxicidad , Dosificación de Gen , Genómica/métodos , Mutagénesis/efectos de los fármacos , Análisis de Secuencia de ADN , Cromosoma X
13.
Genetics ; 201(2): 613-29, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26219299

RESUMEN

FoxO transcription factors promote longevity across taxa. How they do so is poorly understood. In the nematode Caenorhabditis elegans, the A- and F-isoforms of the FoxO transcription factor DAF-16 extend life span in the context of reduced DAF-2 insulin-like growth factor receptor (IGFR) signaling. To elucidate the mechanistic basis for DAF-16/FoxO-dependent life span extension, we performed an integrative analysis of isoform-specific daf-16/FoxO mutants. In contrast to previous studies suggesting that DAF-16F plays a more prominent role in life span control than DAF-16A, isoform-specific daf-16/FoxO mutant phenotypes and whole transcriptome profiling revealed a predominant role for DAF-16A over DAF-16F in life span control, stress resistance, and target gene regulation. Integration of these datasets enabled the prioritization of a subset of 92 DAF-16/FoxO target genes for functional interrogation. Among 29 genes tested, two DAF-16A-specific target genes significantly influenced longevity. A loss-of-function mutation in the conserved gene gst-20, which is induced by DAF-16A, reduced life span extension in the context of daf-2/IGFR RNAi without influencing longevity in animals subjected to control RNAi. Therefore, gst-20 promotes DAF-16/FoxO-dependent longevity. Conversely, a loss-of-function mutation in srr-4, a gene encoding a seven-transmembrane-domain receptor family member that is repressed by DAF-16A, extended life span in control animals, indicating that DAF-16/FoxO may extend life span at least in part by reducing srr-4 expression. Our discovery of new longevity genes underscores the efficacy of our integrative strategy while providing a general framework for identifying specific downstream gene regulatory events that contribute substantially to transcription factor functions. As FoxO transcription factors have conserved functions in promoting longevity and may be dysregulated in aging-related diseases, these findings promise to illuminate fundamental principles underlying aging in animals.


Asunto(s)
Envejecimiento/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Factores de Transcripción Forkhead/genética , Longevidad/genética , Transcripción Genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/biosíntesis , Factores de Transcripción Forkhead/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Insulina/genética , Mutación , Isoformas de Proteínas , Receptores de Somatomedina/genética , Transducción de Señal/genética
14.
Methods ; 68(3): 437-40, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24874788

RESUMEN

Forward genetics has been an undeniably powerful approach in Caenorhabditis elegans and other model organisms. However, the trek from mutant isolation to identification of the causative molecular lesion can be time-consuming and fraught with obstacles. This has changed with the advent of whole genome sequencing (WGS). The widespread availability of high-throughput sequencing technology, coupled with the increasing affordability of WGS, has enabled the routine use of WGS in the analysis of forward genetic screens. The noteworthy development of one-step mapping/sequencing approaches has largely eliminated the bottleneck of conventional high-resolution mapping, greatly accelerating the journey from mutagenesis to gene discovery. By enabling the use of increasingly complex and diverse genetic backgrounds as substrates for mutagenesis, WGS is expanding the landscape of biological problems that can be interrogated using forward genetic approaches in C. elegans and other organisms.


Asunto(s)
Caenorhabditis elegans/genética , Variación Genética , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Animales , Mapeo Cromosómico , Mutagénesis , Polimorfismo de Nucleótido Simple
15.
Cell Metab ; 19(1): 73-83, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24411940

RESUMEN

Small-molecule ligands of nuclear hormone receptors (NHRs) govern the transcriptional regulation of metazoan development, cell differentiation, and metabolism. However, the physiological ligands of many NHRs remain poorly characterized, primarily due to lack of robust analytical techniques. Using comparative metabolomics, we identified endogenous steroids that act as ligands of the C. elegans NHR, DAF-12, a vitamin D and liver X receptor homolog regulating larval development, fat metabolism, and lifespan. The identified molecules feature unexpected chemical modifications and include only one of two DAF-12 ligands reported earlier, necessitating a revision of previously proposed ligand biosynthetic pathways. We further show that ligand profiles are regulated by a complex enzymatic network, including the Rieske oxygenase DAF-36, the short-chain dehydrogenase DHS-16, and the hydroxysteroid dehydrogenase HSD-1. Our results demonstrate the advantages of comparative metabolomics over traditional candidate-based approaches and provide a blueprint for the identification of ligands for other C. elegans and mammalian NHRs.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Longevidad/fisiología , Metabolómica , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Colestenos/química , Colestenos/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Ligandos , Espectroscopía de Resonancia Magnética , Mutación/genética , Especificidad de Órganos , Transducción de Señal , Esteroides/metabolismo
16.
Genetics ; 194(3): 619-29, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23733789

RESUMEN

During embryogenesis, an essential process known as dosage compensation is initiated to equalize gene expression from sex chromosomes. Although much is known about how dosage compensation is established, the consequences of modulating the stability of dosage compensation postembryonically are not known. Here we define a role for the Caenorhabditis elegans dosage compensation complex (DCC) in the regulation of DAF-2 insulin-like signaling. In a screen for dauer regulatory genes that control the activity of the FoxO transcription factor DAF-16, we isolated three mutant alleles of dpy-21, which encodes a conserved DCC component. Knockdown of multiple DCC components in hermaphrodite and male animals indicates that the dauer suppression phenotype of dpy-21 mutants is due to a defect in dosage compensation per se. In dpy-21 mutants, expression of several X-linked genes that promote dauer bypass is elevated, including four genes encoding components of the DAF-2 insulin-like pathway that antagonize DAF-16/FoxO activity. Accordingly, dpy-21 mutation reduced the expression of DAF-16/FoxO target genes by promoting the exclusion of DAF-16/FoxO from nuclei. Thus, dosage compensation enhances dauer arrest by repressing X-linked genes that promote reproductive development through the inhibition of DAF-16/FoxO nuclear translocation. This work is the first to establish a specific postembryonic function for dosage compensation in any organism. The influence of dosage compensation on dauer arrest, a larval developmental fate governed by the integration of multiple environmental inputs and signaling outputs, suggests that the dosage compensation machinery may respond to external cues by modulating signaling pathways through chromosome-wide regulation of gene expression.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Compensación de Dosificación (Genética) , Desarrollo Embrionario , Insulina/metabolismo , Factores de Transcripción/genética , Animales , Caenorhabditis elegans/genética , Factores de Transcripción Forkhead , Regulación del Desarrollo de la Expresión Génica , Genes Ligados a X , Insulina/genética , Masculino , Mutación , Receptor de Insulina/genética , Transducción de Señal
17.
Aging Cell ; 12(5): 932-40, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23786484

RESUMEN

The AGC family serine-threonine kinases Akt and Sgk are similar in primary amino acid sequence and in vitro substrate specificity, and both kinases are thought to directly phosphorylate and inhibit FoxO transcription factors. In the nematode Caenorhabditis elegans, it is well established that AKT-1 controls dauer arrest and lifespan by regulating the subcellular localization of the FoxO transcription factor DAF-16. SGK-1 is thought to act similarly to AKT-1 in lifespan control by phosphorylating and inhibiting the nuclear translocation of DAF-16/FoxO. Using sgk-1 null and gain-of-function mutants, we now provide multiple lines of evidence indicating that AKT-1 and SGK-1 influence C. elegans lifespan, stress resistance, and DAF-16/FoxO activity in fundamentally different ways. Whereas AKT-1 shortens lifespan, SGK-1 promotes longevity in a DAF-16-/FoxO-dependent manner. In contrast to AKT-1, which reduces resistance to multiple stresses, SGK-1 promotes resistance to oxidative stress and ultraviolet radiation but inhibits thermotolerance. Analysis of several DAF-16/FoxO target genes that are repressed by AKT-1 reveals that SGK-1 represses a subset of these genes while having little influence on the expression of others. Accordingly, unlike AKT-1, which promotes the cytoplasmic sequestration of DAF-16/FoxO, SGK-1 does not influence DAF-16/FoxO subcellular localization. Thus, in spite of their similar in vitro substrate specificities, Akt and Sgk influence longevity, stress resistance, and FoxO activity through distinct mechanisms in vivo. Our findings highlight the need for a re-evaluation of current paradigms of FoxO regulation by Sgk.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Longevidad/genética , Mutación , Proteínas Serina-Treonina Quinasas/genética , Factores de Transcripción/genética , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Femenino , Factores de Transcripción Forkhead , Regulación del Desarrollo de la Expresión Génica , Masculino , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
18.
G3 (Bethesda) ; 3(5): 841-50, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23550118

RESUMEN

Sterol-sensing nuclear receptors and insulin-like growth factor signaling play evolutionarily conserved roles in the control of aging. In the nematode Caenorhabditis elegans, bile acid-like steroid hormones known as dafachronic acids (DAs) influence longevity by binding to and regulating the activity of the conserved nuclear receptor DAF-12, and the insulin receptor (InsR) ortholog DAF-2 controls life span by inhibiting the FoxO transcription factor DAF-16. How the DA/DAF-12 pathway interacts with DAF-2/InsR signaling to control life span is poorly understood. Here we specifically investigated the roles of liganded and unliganded DAF-12 in life span control in the context of reduced DAF-2/InsR signaling. In animals with reduced daf-2/InsR activity, mutations that either reduce DA biosynthesis or fully abrogate DAF-12 activity shorten life span, suggesting that liganded DAF-12 promotes longevity. In animals with reduced DAF-2/InsR activity induced by daf-2/InsR RNAi, both liganded and unliganded DAF-12 promote longevity. However, in daf-2/InsR mutants, liganded and unliganded DAF-12 act in opposition to control life span. Thus, multiple DAF-12 activities influence life span in distinct ways in contexts of reduced DAF-2/InsR signaling. Our findings establish new roles for a conserved steroid signaling pathway in life span control and elucidate interactions among DA biosynthetic pathways, DAF-12, and DAF-2/InsR signaling in aging.


Asunto(s)
Caenorhabditis elegans/fisiología , Hormonas/farmacología , Insulina/metabolismo , Longevidad/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Esteroides/farmacología , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colestenos/metabolismo , Genes de Helminto , Células Germinativas/efectos de los fármacos , Células Germinativas/metabolismo , Ligandos , Modelos Biológicos , Mutación/genética , Receptor de Insulina/metabolismo , Transcripción Genética/efectos de los fármacos
19.
PLoS Genet ; 9(12): e1004020, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24385923

RESUMEN

Recent work has identified changes in the metabolism of the aromatic amino acid tyrosine as a risk factor for diabetes and a contributor to the development of liver cancer. While these findings could suggest a role for tyrosine as a direct regulator of the behavior of cells and tissues, evidence for this model is currently lacking. Through the use of RNAi and genetic mutants, we identify tatn-1, which is the worm ortholog of tyrosine aminotransferase and catalyzes the first step of the conserved tyrosine degradation pathway, as a novel regulator of the dauer decision and modulator of the daf-2 insulin/IGF-1-like (IGFR) signaling pathway in Caenorhabditis elegans. Mutations affecting tatn-1 elevate tyrosine levels in the animal, and enhance the effects of mutations in genes that lie within the daf-2/insulin signaling pathway or are otherwise upstream of daf-16/FOXO on both dauer formation and worm longevity. These effects are mediated by elevated tyrosine levels as supplemental dietary tyrosine mimics the phenotypes produced by a tatn-1 mutation, and the effects still occur when the enzymes needed to convert tyrosine into catecholamine neurotransmitters are missing. The effects on dauer formation and lifespan require the aak-2/AMPK gene, and tatn-1 mutations increase phospho-AAK-2 levels. In contrast, the daf-16/FOXO transcription factor is only partially required for the effects on dauer formation and not required for increased longevity. We also find that the controlled metabolism of tyrosine by tatn-1 may function normally in dauer formation because the expression of the TATN-1 protein is regulated both by daf-2/IGFR signaling and also by the same dietary and environmental cues which influence dauer formation. Our findings point to a novel role for tyrosine as a developmental regulator and modulator of longevity, and support a model where elevated tyrosine levels play a causal role in the development of diabetes and cancer in people.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Longevidad/genética , Redes y Vías Metabólicas/genética , Tirosina Transaminasa/genética , Tirosina/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Factores de Transcripción Forkhead , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes , Humanos , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Mutación , Interferencia de ARN , Receptor de Insulina/metabolismo , Factores de Transcripción/genética , Tirosina/metabolismo
20.
WormBook ; : 1-43, 2013 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-24395814

RESUMEN

The C. elegans insulin/IGF-1 signaling (IIS) pathway connects nutrient levels to metabolism, growth, development, longevity, and behavior. This fundamental pathway is regulated by insulin-like peptide ligands that bind to the insulin/IGF-1 transmembrane receptor (IGFR) ortholog DAF-2. DAF-2/IGFR controls the activity of a conserved phosphoinositide 3-kinase (PI3K)/Akt kinase cascade, culminating in the regulation of a FoxO transcription factor, DAF-16, that governs most of the functions of this pathway. In light of the evolutionary conservation of the IIS pathway, its study in C. elegans is likely to shed light on its functions and regulation in higher organisms, including humans. Originally identified based on its role in the regulation of larval development and aging, IIS also controls a host of other biological processes. Here we review what is currently known about the biological functions and the molecular components of C. elegans IIS.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Transducción de Señal , Animales , Receptor de Insulina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA