Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 336: 122104, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670774

RESUMEN

Developing green and high-performance adsorbents to separate heavy metals from wastewater is a challenging task. Biomass hydrogel has the advantages of low cost, renewability, and biodegradability, but it has the problem of low adsorption efficiency. Herein, a novel chitosan/cellulose phosphonate composite hydrogel(CS/MCCP) is fabricated by two steps of reactions including the Phosphorylation reaction and the Mannich reaction. As an excellent chelating group, the phosphonate group greatly enhances the adsorption efficiency of the biomass hydrogel. The CS/MCCP shows ultrafast adsorption rate and excellent adsorption capacity for Pb(II) and Cu(II). The saturated adsorption capacity of Pb(II) and Cu(II) is 211.42 and 74.29 mg·g-1, respectively. The adsorption equilibration time is only 10 min. The adsorption performance of the CS/MCCP is superior to that of the reported cellulose/chitosan hydrogels. Besides, an in-depth analysis of the adsorption mechanism is conducted using X-ray photoelectron spectroscopy(XPS) combined with Density Functional Theory(DFT) calculation. The results reveal that the adsorption mechanism is electrostatic attraction and surface complexation, and there is a synergistic coordination between the phosphonate groups and the amino groups.

2.
Nat Commun ; 15(1): 2076, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453928

RESUMEN

Attaining high hydrogenation performance under mild conditions, especially at ambient pressure, remains a considerable challenge due to the difficulty in achieving efficient mass transfer at the gas-liquid-solid three-phase interface. Here, we present a zeolite nanoreactor with joint gas-solid-liquid interfaces for boosting H2 gas and substrates to involve reactions. Specifically, the Pt active sites are encapsulated within zeolite crystals, followed by modifying the external zeolite surface with organosilanes. The silane sheath with aerophilic/hydrophobic properties can promote the diffusion of H2 and the mass transfer of reactant/product molecules. In aqueous solutions, the gaseous H2 molecules can rapidly diffuse into the zeolite channels, thereby augmenting H2 concentration surround Pt sites. Simultaneously, the silane sheath with lipophilicity nature promotes the enrichment of the aldehydes/ketones on the catalyst and facilitates the hydrophilia products of alcohol rediffusion back to the aqueous phase. By modifying the wettability of the catalyst, the hydrogenation of aldehydes/ketones can be operated in water at ambient H2 pressure, resulting in a noteworthy turnover frequency up to 92.3 h-1 and a 4.3-fold increase in reaction rate compared to the unmodified catalyst.

3.
Nano Lett ; 23(23): 11280-11287, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38047724

RESUMEN

2D van der Waals (vdW) materials offer infinite possibilities for constructing unique ferroelectrics through simple layer stacking and rotation. In this work, we stack nonferroelectric GeS2 and ferroelectric CuInP2S6 to form heterostructures by combining sliding ferroelectric polarization with displacement ferroelectric polarization to achieve multiple polarization states. First-principles calculations reveal that the polarization reversal of the CuInP2S6 component in the GeS2/CuInP2S6/GeS2 heterostructure can simultaneously drive the switching of sliding ferroelectric polarization, displaying a robust coupling of the two polarizations and leading to the overall polarization switching. Based on this, ferroelectric arrays with a density of 6.55 × 1012 cm-2 (equivalent to a storage density of 0.7 TB cm-2) were constructed in a moiré superlattice, and the polarization strength of array elements was 11.77 pC/m, higher than that of all reported 2D vdW out-of-plane ferroelectrics. High density, large polarization, and electrically switchable array elements in ferroelectric arrays provide unprecedented opportunities to design 2D high-density nonvolatile ferroelectric memories.

4.
Int J Biol Macromol ; 253(Pt 7): 127110, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37783249

RESUMEN

Current cellulose-based adsorbents suffer from the drawbacks of low adsorption capacity or slow adsorption rate for heavy metal ions. It is imperative to prepare new cellulose-based materials to improve the adsorption ability. In this work, we aim to introduce phosphonate groups to improve the adsorption ability of cellulose and select polyethyleneimine (PEI) for synergistic adsorption. A novel cellulose phosphonate/polyethyleneimine composite (MCCP-PEI) is prepared via the Mannich reaction. The structure and composition of MCCP-PEI are characterized by various advanced microscopy and spectroscopy techniques, and the results show that MCCP-PEI possesses abundant nano-porous structure, strong chelating sites, and excellent hydrophilicity. Besides, the adsorption behavior of MCCP-PEI for heavy metals has been systematically investigated. The results show that the adsorbent can quickly remove toxic Cu(II) and Pb(II) from water within 15 min and 20 min, respectively. The saturated adsorption capacity for Cu(II) and Pb(II) is 250.0 and 534.7 mg·g-1, respectively. X-ray photoelectron spectroscopy analysis combined with Density Functional Theory calculations reveal that the adsorption mechanism is chemical complexation and electrostatic attraction, and the phosphonate group plays a key role in the adsorption process.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Agua , Polietileneimina/química , Plomo , Celulosa , Metales Pesados/química , Contaminantes Químicos del Agua/química , Adsorción , Cinética
5.
Inorg Chem ; 62(8): 3692-3702, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36764007

RESUMEN

Direct oxidative coupling of alcohols with amines over cheap but efficient catalysts is a promising choice for imine formation. In this study, porous CeO2-MnO2 binary oxides were prepared via an interfacial reaction between Ce2(SO4)3 and KMnO4 at room temperature without any additives. The as-prepared porous CeO2-MnO2 catalyst has a higher fraction of Ce3+, Mn3+, and Mn4+ and contains larger surface area and more oxygen vacancies. During the oxidative coupling reaction of alcohol with amine to imine, the as-obtained CeO2-MnO2 catalyst is motivated by the above encouraging characteristics and exhibits superior catalytic activity (98% conversion and 97% selectivity) and can also work effectively under a wide scope of temperatures and substrates. The in-depth in situ DRIFTS and density functional theory (DFT) results demonstrate that there is a strong interaction between CeO2 and MnO2 in the CeO2-MnO2 catalyst, exhibiting especially a positive synergistic effect in the direct coupling of alcohol and amine reaction.

6.
Nanoscale ; 14(35): 12713-12721, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35996893

RESUMEN

Controllable synthesis of MOFs with desired structures is of great significance to deepen the understanding of the crystal nucleation-growth mechanism and deliver unique structural features to their derived metal oxides with target catalytic applications. In this study, NH2-Ce-BDC with morphology similar to a second-order magic cube (mc) is facile synthesized via H+ mediation in nucleation and growth stages. The pertinent variables that can greatly influence the formation of magic cube-like structures (MCS) were investigated, in which the concentric diffusion field was found to be one of the key factors. Upon calcination, the derived CeO2 inherits unique gullies and grooves located on the pristine MOFs surface, which is quite useful for atomic layer deposition (ALD) of platinum (Pt) nanoparticles because of strong interaction with MOF-derived CeO2 (mc-CeO2). XPS, H2-TPR, Raman, and in situ DRIFTS characterization results show that there is a stronger interaction between Pt and mc-CeO2 in mc-Pt/CeO2 compared with c-Pt/CeO2 that is derived from the well-developed cubic Ce-MOFs. Furthermore, Pt2+ ions, hydroxyl oxygen, and oxygen defects in mc-Pt/CeO2 account highly for exemplary catalytic activity toward HCHO oxidation.

7.
Adv Mater ; 33(39): e2101473, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34365658

RESUMEN

High-entropy materials (HEMs) have great potential for energy storage and conversion due to their diverse compositions, and unexpected physical and chemical features. However, high-entropy atomic layers with fully exposed active sites are difficult to synthesize since their phases are easily segregated. Here, it is demonstrated that high-entropy atomic layers of transition-metal carbide (HE-MXene) can be produced via the selective etching of novel high-entropy MAX (also termed Mn +1 AXn (n = 1, 2, 3), where M represents an early transition-metal element, A is an element mainly from groups 13-16, and X stands for C and/or N) phase (HE-MAX) (Ti1/5 V1/5 Zr1/5 Nb1/5 Ta1/5 )2 AlC, in which the five transition-metal species are homogeneously dispersed into one MX slab due to their solid-solution feature, giving rise to a stable transition-metal carbide in the atomic layers owing to the high molar configurational entropy and correspondingly low Gibbs free energy. Additionally, the resultant high-entropy MXene with distinct lattice distortions leads to high mechanical strain into the atomic layers. Moreover, the mechanical strain can efficiently guide the nucleation and uniform growth of dendrite-free lithium on HE-MXene, achieving a long cycling stability of up to 1200 h and good deep stripping-plating levels of up to 20 mAh cm-2 .

8.
ACS Nano ; 15(3): 4927-4936, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33617242

RESUMEN

Single atom catalysts possess attractive electrocatalytic activities for various chemical reactions owing to their favorable geometric and electronic structures compared to the bulk counterparts. Herein, we demonstrate an efficient approach to producing single atom copper immobilized MXene for electrocatalytic CO2 reduction to methanol via selective etching of hybrid A layers (Al and Cu) in quaternary MAX phases (Ti3(Al1-xCux)C2) due to the different saturated vapor pressures of Al- and Cu-containing products. After selective etching of Al in the hybrid A layers, Cu atoms are well-preserved and simultaneously immobilized onto the resultant MXene with dominant surface functional group (Clx) on the outmost Ti layers (denoted as Ti3C2Clx) via Cu-O bonds. Consequently, the as-prepared single atom Cu catalyst exhibits a high Faradaic efficiency value of 59.1% to produce CH3OH and shows good electrocatalytic stability. On the basis of synchrotron-based X-ray absorption spectroscopy analysis and density functional theory calculations, the single atom Cu with unsaturated electronic structure (Cuδ+, 0 < δ < 2) delivers a low energy barrier for the rate-determining step (conversion of HCOOH* to absorbed CHO* intermediate), which is responsible for the efficient electrocatalytic CO2 reduction to CH3OH.

9.
Nanoscale ; 12(39): 20413-20424, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33026034

RESUMEN

Bimetallic atom catalysts (BACs), which can exhibit remarkable catalytic performance compared with single atom catalysts (SACs) due to their higher metal loading and the synergy between two metal atoms, have attracted great attention in research. Herein, by means of density functional theory calculations, novel BACs with a bilayer structure composed of monolayers FeN4 (Fe and nitrogen co-doped graphene) and MN4 (Fe/M, M represents transition metal atoms) as electrocatalysts for the hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), and oxygen evolution reaction (OER) are investigated. Among these bilayer SACs, a series of highly efficient monofunctional, bifunctional, and even trifunctional electrocatalysts have been screened. For example, the overpotentials for the HER, ORR, and OER can reach -0.02 (Fe/Cu), 0.31 (Fe/Hg), and 0.27 V (Fe/Hf), respectively; Fe/Hf and Ir/Fe can serve as promising bifunctional catalysts for the ORR/OER and HER/OER, respectively and Fe/Rh is considered as an excellent trifunctional catalyst for the HER, OER, and ORR. This work not only provides a new idea for understanding and optimizing the active sites of BACs, but also proposes a new strategy for designing high-performance multifunctional electrocatalysts for fuel cells and metal-air batteries.

10.
ChemSusChem ; 13(14): 3636-3644, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32367626

RESUMEN

The electrocatalytic nitrogen reduction reaction (NRR) is a most attractive approach to ammonia synthesis, and the development of catalysts with excellent activity, high NRR selectivity, and long-term durability is crucial but remains a great challenge. Herein, by means of density functional theory calculations, the stability and catalytic performance of anchored bimetals was systematically investigated by pairing different transition-metal atoms (Mo, Cr, Ti, V, Ru, and W) on graphene with different coordination atoms (C, N, O, P, and S) for N2 fixation. By screening the stability, limiting potential, and selectivity of 105 candidates, carbon was found to be the optimal coordination atom for bimetallic pairs, whereas the other four coordination atoms were unsatisfactory owing to either thermodynamically unstable anchor sites for bimetallic pairs (O, P, and S atoms) or relatively low catalytic activity (N atom). Notably, the bimetallic compound of Mo and Ti supported on C-coordinated graphene (MoTi-CG) and TiV-CG were predicted as effective NRR catalysts with the attractive limiting potentials of -0.34 and -0.30 V. Furthermore, the volcano curve between the limiting potential and the adsorption free energy of NH2 * [ΔG(NH2 *)] was revealed, in which a moderate ΔG(NH2 *) was required for high-activity NRR catalysts. This study not only provides a theoretical basis for the rational design of bimetallic compounds anchored on graphene as effective NRR catalysts under ambient conditions but also opens up a new way to accelerate the screening of NRR catalysts.

11.
RSC Adv ; 10(5): 2670-2676, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35496108

RESUMEN

Lithium-sulfur (Li-S) batteries are promising candidates for next generation rechargeable batteries because of their high energy density of 2600 W h kg-1. However, the insulating nature of sulfur and Li2S, the "shuttle effect" of lithium polysulfides (LiPSs), and the volumetric change of sulfur electrodes limit the practical application of Li-S batteries. Here, lychee-like TiO2@TiN hollow spheres (LTTHS) have been developed that combine the advantages of high adsorption TiO2 and high conductivity TiN to achieve smooth adsorption/spread/conversion of LiPSs and use them as a sulfur host material in Li-S batteries for the first time. The cathode exhibits an initial specific capacity of 1254 mA h g-1 and a reversible capacity of 533 mA h g-1 after 500 cycles at 0.2C, which corresponds to an average coulombic efficiency up to 99%. The cell with the LTTHS@S cathode achieved an extended lifespan of over 1000 cycles. Such good performance can be assigned to the good adsorption and catalysis of the dual-function TiO2@TiN composite. This work proved that the TiO2@TiN composite can be an attractive matrix for sulfur cathodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...