Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 11(3): e0028123, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37052485

RESUMEN

The histone acetyltransferase (HAT) Gcn5 ortholog is essential for a variety of fungi. Here, we characterize the roles of Ada2 and Ada3, which are functionally linked to Gcn5, in the insect-pathogenic fungus Beauveria bassiana. Loss of Ada2 and Ada3 led to severe hyphal growth defects on rich and minimal media and drastic decreases in blastospore yield and conidiation capacity, with abnormal conidia-producing structures. ΔAda2 and ΔAda3 exhibited a delay in conidial germination and increased sensitivity to multiple chemical stresses and heat shock. Nearly all their pathogenicity was lost, and their ability to secrete extracellular enzymes, Pr1 proteases and chitinases for cuticle degradation was reduced. A yeast two-hybrid assay demonstrated that Ada2 binds to Ada3 and directly interacts with Gcn5, confirming the existence of a yeast-like Ada3-Ada2-Gcn5 HAT complex in this fungus. Additionally, deletion of the Ada genes reduced the activity of Gcn5, especially in the ΔAda2 strain, which was consistent with the acetylation level of histone H3 determined by Western blotting. These results illustrate the dependence of Gcn5 enzyme activity on Ada2 and Ada3 in fungal hyphal growth, asexual development, multiple stress responses, and pathogenicity in B. bassiana. IMPORTANCE The histone acetyltransferase Gcn5 ortholog contributes significantly to the growth and development of various fungi. In this study, we found that Ada2 and Ada3 have critical regulatory effects on Gcn5 enzyme activity and influence the acetylation of histone H3. Deletion of Ada2 or Ada3 decreased the fungal growth rate and asexual conidial yield and increased susceptibility to multiple stresses in Beauveria bassiana. Importantly, Ada genes are vital virulence factors, and their deletion caused the most virulence loss, mainly by inhibiting the activity of a series of hydrolytic enzymes and the dimorphic transition ability. These findings provide a new perspective on the function of the Gcn5 acetyltransferase complex in pathogens.


Asunto(s)
Beauveria , Proteínas de Saccharomyces cerevisiae , Histonas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Virulencia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas/metabolismo
2.
Microbiol Spectr ; : e0474822, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36786652

RESUMEN

As an important chitin-modifying enzyme, chitin deacetylase (CDA) has been characterized in many fungi, but its function in the entomopathogenic fungus Beauveria bassiana remains unclear. Three CDAs with conserved domains of the carbohydrate esterase 4 (CE-4) family were identified in B. bassiana. Disruption of CDA1 resulted in growth restriction of the fungus on medium with chitin as a carbon source or without a carbon source. Deletion of CDA1 and CDA2 led to defects in fungal conidial formation and conidial vitality compared with those of the wild type (WT), and the conidial yield decreased by 25.81% to 47.68%. Inactivation of three CDA genes resulted in a decrease of 20.23% to 27% in the blastospore yield. ΔCDA1 and ΔCDA3 showed 29.33% and 23.34% reductions in cuticular infection virulence, respectively. However, the CDA family may not contribute to hemocoel infection virulence. Additionally, the sporulation of the insect carcass showed that the three gene deletion mutants were 68.45%, 63.84%, and 56.65% less than WT. Penetration experiments with cicada wings and enzyme activity assays were used to further explore the effect of the fungus on chitin metabolism after gene deletion. Although the three gene deletion mutants penetrated the cicada wings successfully and continued to grow on the underlying medium, their colony sizes were reduced by 29.12% to 47.76%. The CDA enzyme activity of ΔCDA1 and ΔCDA3 decreased by 84.76% and 83.04%, respectively. These data showed that members of the CDA family play a different role in fungal growth, conidial quality, and virulence. IMPORTANCE In this study, we report the roles of CDA family in entomopathogenic fungus B. bassiana. Our results indicated that CDA modulates asexual development and regulates fungal virulence by altering chitin deacetylation and metabolic capacity. CDA affected the biological control potential and life history of B. bassiana by affecting its parasitic and saprophytic life. These findings provide novel insights into the roles of multiple CDA paralogues existing in fungal biocontrol agents.

3.
Int J Biol Macromol ; 206: 875-885, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35278517

RESUMEN

Ndt80-like transcription factor Ron1 is best known for its essential role in the regulation of N-acetylglucosamine (GlcNAc) catabolism. Ron1 was again found to be essential for sensing GlcNAc in Beauveria bassiana. Importantly, our study revealed that Ron1 is involved in the metabolic processes of chitin and asexual development. To further investigate the novel functions of Ron1 in B. bassiana, extracellular chitinase activity in the ΔRon1 mutant was found to decrease by 84.73% compared with wild type. The deletion of Ron1 made it difficult for the fungus to accumulate intracellular GlcNAc. Furthermore, transcriptomic analysis revealed that Ron1 exerted a significant effect on global transcription and positively regulated genes encoding chitin metabolism in respond to chitin nutrition. Yeast one-hybrid assay confirmed that Ron1 could bind to specific cis-acting elements in the promoters of chitinase and hexokinase. In addition, ΔRon1 displayed an impaired chitin component of the cell wall, with a chitin synthetase (ChsVII) predicted to function downstream of Ron1. Finally, the virulence of ΔRon1 mutant was significantly reduced in the Galleria mellonella insect model through cuticle infection or cuticle bypassing infection. These data functionally characterize Ron1 in B. bassiana and expand our understanding of how the transcription factor Ron1 works in pathogens.


Asunto(s)
Beauveria , Quitinasas , Quitina/metabolismo , Quitinasas/genética , Quitinasas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Factores de Transcripción/metabolismo , Virulencia/genética
4.
Fungal Biol ; 125(10): 776-784, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34537173

RESUMEN

The mannosyltransferase Alg9 plays a vital role in N-linked protein glycosylation in Saccharomyces cerevisiae, but its function in most filamentous fungi is not clear. The present study characterized BbAlg9 (an ortholog of S. cerevisiae Alg9) in Beauveria bassiana to determine the roles of N-mannosyltransferase in biological control potential of the filamentous entomopathogenic fungus. The disruption of BbAlg9 led to slower fungal growth in media with various nutrition compositions. The conidiation of ΔBbAlg9 was less than that of the wild type from the third to the fifth day but showed no significant difference on the sixth day, suggesting that BbAlg9 affects the development of conidia rather than conidial yield of late stage. ΔBbAlg9 showed defects in conidial germination, multiple stress tolerances and the yield of blastospores, with altered size and density, and virulence in hosts infected via the immersion and injection methods. The deletion of BbAlg9 resulted in defects in cell wall integrity, including increased mannoprotein and glucan content and decreased chitin content, which were accompanied by transcriptional activation or suppression of genes related to cell wall component biosynthesis. Notably, deletion of the N-mannosyltransferase BbAlg9 altered the transcription levels of O-mannosyltransferase genes (Pmt and Ktr family). These data show that BbAlg9 is involved in the fungal development, conidial stress tolerance, cell wall integrity and virulence of B. bassiana.


Asunto(s)
Beauveria , Beauveria/genética , Pared Celular , Proteínas Fúngicas/genética , Eliminación de Gen , Manosiltransferasas/genética , Saccharomyces cerevisiae , Esporas Fúngicas , Estrés Fisiológico , Virulencia
5.
Microbiol Spectr ; 9(1): e0056421, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34378960

RESUMEN

Beauveria bassiana is an insect pathogenic fungus that serves as a model system for exploring the mechanisms of fungal development and host-pathogen interactions. Clinical and experimental studies have indicated that SND1 is closely correlated with the progression and invasiveness of common cancers as a potential oncogene, but this gene has rarely been studied in fungi. Here, we characterized the contributions of an SND1 ortholog (Tdp1) by constructing a BbTdp1 deletion strain and a complemented strain of B. bassiana. Compared with the wild-type (WT) strain, the ΔBbTdp1 mutant lost conidiation capacity (∼87.7%) and blastospore (∼96.3%) yields, increased sensitivity to chemical stress (4.4 to 54.3%) and heat shock (∼44.2%), and decreased virulence following topical application (∼24.7%) and hemocoel injection (∼40.0%). Flow cytometry readings showed smaller sizes of both conidia and blastospores for ΔBbTdp1 mutants. Transcriptomic data revealed 4,094 differentially expressed genes (|log2 ratio| > 2 and a q value of <0.05) between ΔBbTdp1 mutants and the WT strain, which accounted for 41.6% of the total genes, indicating that extreme fluctuation in the global gene expression pattern had occurred. Moreover, deletion of BbTdp1 led to an abnormal cell cycle with a longer S phase and shorter G2/M and G0/G1 phases of blastospores, and enzyme-linked immunosorbent assay confirmed that the level of phosphorylated cyclin-dependent kinase 1 (Cdk1) in the ΔBbTdp1 strain was ∼31.5% lower than in the WT strain. In summary, our study is the first to report that BbTdp1 plays a vital role in regulating conidia and blastospore yields, fungal morphological changes, and pathogenicity in entomopathogenic fungi. IMPORTANCE In this study, we used Beauveria bassiana as a biological model to report the role of BbTdp1 in entomopathogenic fungi. Our findings indicated that BbTdp1 contributed significantly to cell development, the cell cycle, and virulence in B. bassiana. In addition, deletion of BbTdp1 led to drastic fluctuations in the transcriptional profile. BbTdp1 can be developed as a novel target for B. bassiana development and pathogenicity, which also provides a framework for the study of Tdp1 in other fungi.


Asunto(s)
Beauveria/crecimiento & desarrollo , Beauveria/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Insectos/microbiología , Animales , Beauveria/genética , Beauveria/patogenicidad , Ciclo Celular , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Transcriptoma , Dominio Tudor , Virulencia
6.
PLoS One ; 16(3): e0249350, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33788872

RESUMEN

The p53-like transcription factor (TF) NDT80 plays a vital role in the regulation of pathogenic mechanisms and meiosis in certain fungi. However, the effects of NDT80 on entomopathogenic fungi are still unknown. In this paper, the NDT80 orthologue BbTFO1 was examined in Beauveria bassiana, a filamentous entomopathogenic fungus, to explore the role of an NDT80-like protein for fungal pest control potential. Disruption of BbTFO1 resulted in impaired resistance to oxidative stress (OS) in a growth assay under OS and a 50% minimum inhibitory concentration experiment. Intriguingly, the oxidation resistance changes were accompanied by transcriptional repression of the two key antioxidant enzyme genes cat2 and cat5. ΔBbTFO1 also displayed defective conidial germination, virulence and heat resistance. The specific supplementation of BbTFO1 reversed these phenotypic changes. As revealed by this work, BbTFO1 can affect the transcription of catalase genes and play vital roles in the maintenance of phenotypes associated with the biological control ability of B. bassiana.


Asunto(s)
Beauveria/metabolismo , Proteínas Fúngicas/metabolismo , Insectos/microbiología , Factores de Transcripción/metabolismo , Virulencia/genética , Animales , Beauveria/aislamiento & purificación , Beauveria/patogenicidad , Catalasa/genética , Catalasa/metabolismo , Proteínas Fúngicas/clasificación , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Mutación , Estrés Oxidativo/genética , Fenotipo , Filogenia , Estrés Fisiológico , Temperatura , Factores de Transcripción/clasificación , Factores de Transcripción/genética
7.
Pestic Biochem Physiol ; 171: 104732, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33357554

RESUMEN

Beauveria bassiana is a promising biocontrol agent due to its entomopathogenic activities and residue-free characteristics. However, its susceptibility to abiotic stresses and naturally low virulence limit the effective application of this fungus. To effectively obtain fungal strains with high biocontrol potential, fluorescence-activated cell sorting (FACS) was used to screen mutant libraries generated by atmospheric and room temperature plasma (ARTP). Among about 8000 mutants obtained by ARTP mutagenesis, six candidate mutants were selected according to the forward scatter (FSC) signal readings of FACS. B6, with a 37.4% higher FSC reading than wild-type (WT), showed a 32.6% increase in virulence. It also presented a 13.5% decrease in median germinating time (GT50) and a 12.1% increase in blastospore production. Comparative analysis between insect transcriptional responses to B6 and WT infection showed that the immune response coupled with protein digestion and absorption progress was highly activated in B6-infected Galleria mellonella larvae, while fatty acid synthesis was suppressed after 3 days of infection. Our results confirmed the feasibility of sorting B. bassiana with high biocontrol potential via the combination of ARTP and FACS and facilitated the understanding of insect-pathogen interactions, highlighting a new strategy for modifying entomopathogenic fungi to improve the efficiency of biological control.


Asunto(s)
Beauveria , Mariposas Nocturnas , Animales , Citometría de Flujo , Mutagénesis , Plasma
8.
Int J Biol Macromol ; 166: 1162-1172, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33159944

RESUMEN

Chitin is one of the major components of the fungal cell wall and contributes to the mechanical strength and shape of the fungal cell. Zn(II)2Cys6 transcription factors are unique to the fungal kingdom and have a variety of functions in some fungi. However, the mechanisms by which Zn(II)2Cys6 proteins affect entomopathogenic fungi are largely unknown. Here, we characterized the Zn(II)2Cys6 transcription factor BbTpc1 in the insect pathogenic fungus Beauveria bassiana. Disruption of BbTpc1 resulted in a distinct changes in vegetative growth and septation patterns, and a significant decrease in conidia and blastospore yield. The ΔBbTpc1 mutant displayed impaired resistance to chemical stresses and heat shock and attenuated virulence in topical and intrahemocoel injection assays. Importantly, the ΔBbTpc1 mutant had an abnormal cell wall with altered wall thickness and chitin synthesis, which were accompanied by transcriptional repression of the chitin synthetase family genes. In addition, comparative transcriptomics revealed that deletion of BbTpc1 altered fungal asexual reproduction via different genetic pathways. These data revealed that BbTpc1 regulates fungal development, chitin synthesis and biological control potential in B. bassiana.


Asunto(s)
Beauveria/crecimiento & desarrollo , Beauveria/patogenicidad , Quitina/biosíntesis , Proteínas Fúngicas/metabolismo , Insectos/microbiología , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Autofagia , Beauveria/genética , Pared Celular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Eliminación de Gen , Hifa/crecimiento & desarrollo , Mutación/genética , Filogenia , Reproducción Asexuada , Esporas Fúngicas/crecimiento & desarrollo , Estrés Fisiológico , Transcriptoma/genética , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...