Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur Phys J E Soft Matter ; 46(12): 135, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38146033

RESUMEN

Autonomous locomotion is a ubiquitous phenomenon in biology and in physics of active systems at microscopic scale. This includes prokaryotic, eukaryotic cells (crawling and swimming) and artificial swimmers. An outstanding feature is the ability of these entities to follow complex trajectories, ranging from straight, curved (circular, helical...), to random-like ones. The non-straight nature of these trajectories is often explained as a consequence of the asymmetry of the particle or the medium in which it moves, or due to the presence of bounding walls, etc... Here, we show that for a particle driven by a concentration field of an active species, straight, circular and helical trajectories emerge naturally in the absence of asymmetry of the particle or that of suspending medium. Our proof is based on general considerations, without referring to an explicit form of a model. We show that these three trajectories correspond to self-congruent solutions. Self-congruency means that the states of the system at different moments of time can be made identical by an appropriate combination of rotation and translation of the coordinate space. We show that these solutions are exhibited by spherically symmetric particles as a result of a series of pitchfork bifurcations, leading to spontaneous symmetry breaking in the concentration field driving the particle motility. Self-congruent dynamics in one and two dimensions are analyzed as well. Finally, we present a simple explicit nonlinear exactly solvable model of fully isotropic phoretic particle that shows the transitions from a non-motile state to straight motion to circular motion to helical motion as a series of spontaneous symmetry-breaking bifurcations. Whether a system exhibits or not a given trajectory only depends on the numerical values of parameters entering the model, while asymmetry of swimmer shape, or anisotropy of the suspending medium, or influence of bounding walls are not necessary.

2.
Phys Rev Lett ; 123(23): 238004, 2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31868429

RESUMEN

The swimming of a rigid phoretic particle in an isotropic fluid is studied numerically as a function of the dimensionless solute emission rate (or Péclet number Pe). The particle sets into motion at a critical Pe. Whereas the particle trajectory is straight at a small enough Pe, it is found that it loses its stability at a critical Pe in favor of a meandering motion. When Pe is increased further, the particle meanders at a short scale but its trajectory wraps into a circle at a larger scale. Increasing even further, Pe causes the swimmer to escape momentarily the circular trajectory in favor of chaotic motion, which lasts for a certain time, before regaining a circular trajectory, and so on. The chaotic bursts become more and more frequent as Pe increases, until the trajectory becomes fully chaotic, via the intermittency scenario. The statistics of the trajectory is found to be of the run-and-tumble-like nature at a short enough time and of diffusive nature at a long time without any source of noise.

3.
Soft Matter ; 12(36): 7470-84, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27546154

RESUMEN

Several micro-organisms, such as bacteria, algae, or spermatozoa, use flagellar or ciliary activity to swim in a fluid, while many other micro-organisms instead use ample shape deformation, described as amoeboid, to propel themselves either by crawling on a substrate or swimming. Many eukaryotic cells were believed to require an underlying substratum to migrate (crawl) by using membrane deformation (like blebbing or generation of lamellipodia) but there is now increasing evidence that a large variety of cells (including those of the immune system) can migrate without the assistance of focal adhesion, allowing them to swim as efficiently as they can crawl. This paper details the analysis of amoeboid swimming in a confined fluid by modeling the swimmer as an inextensible membrane deploying local active forces (with zero total force and torque). The swimmer displays a rich behavior: it may settle into a straight trajectory in the channel or navigate from one wall to the other depending on its confinement. The nature of the swimmer is also found to be affected by confinement: the swimmer can behave, on average over one swimming cycle, as a pusher at low confinement, and becomes a puller at higher confinement, or vice versa. The swimmer's nature is thus not an intrinsic property. The scaling of the swimmer velocity V with the force amplitude A is analyzed in detail showing that at small enough A, V∼A(2)/η(2) (where η is the viscosity of the ambient fluid), whereas at large enough A, V is independent of the force and is determined solely by the stroke cycle frequency and the swimmer size. This finding starkly contrasts with models where motion is based on ciliary and flagellar activity, where V∼A/η. To conclude, two definitions of efficiency as put forward in the literature are analyzed with distinct outcomes. We find that one type of efficiency has an optimum as a function of confinement while the other does not. Future perspectives are outlined.


Asunto(s)
Movimiento Celular/fisiología , Células Eucariotas/citología , Modelos Biológicos , Movimiento (Física) , Fenómenos Biomecánicos , Cilios/fisiología , Flagelos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA