Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
2.
Sensors (Basel) ; 24(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38610287

RESUMEN

Fringe projection profilometry (FPP), with benefits such as high precision and a large depth of field, is a popular 3D optical measurement method widely used in precision reconstruction scenarios. However, the pixel brightness at reflective edges does not satisfy the conditions of the ideal pixel-wise phase-shifting model due to the influence of scene texture and system defocus, resulting in severe phase errors. To address this problem, we theoretically analyze the non-pixel-wise phase propagation model for texture edges and propose a reprojection strategy based on scene texture modulation. The strategy first obtains the reprojection weight mask by projecting typical FPP patterns and calculating the scene texture reflection ratio, then reprojects stripe patterns modulated by the weight mask to eliminate texture edge effects, and finally fuses coarse and refined phase maps to generate an accurate phase map. We validated the proposed method on various texture scenes, including a smooth plane, depth surface, and curved surface. Experimental results show that the root mean square error (RMSE) of the phase at the texture edge decreased by 53.32%, proving the effectiveness of the reprojection strategy in eliminating depth errors at texture edges.

3.
Front Neurol ; 15: 1331537, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523609

RESUMEN

Background: Previous research has yielded conflicting results on the link between epilepsy risk and lipid-lowering medications. The aim of this study is to determine whether the risk of epilepsy outcomes is causally related to lipid-lowering medications predicted by genetics. Methods: We used genetic instruments as proxies to the exposure of lipid-lowering drugs, employing variants within or near genes targeted by these drugs and associated with low-density lipoprotein cholesterol (LDL cholesterol) from a genome-wide association study. These variants served as controlling factors. Through drug target Mendelian randomization, we systematically assessed the impact of lipid-lowering medications, including HMG-CoA reductase (HMGCR) inhibitors, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, and Niemann-Pick C1-like 1 (NPC1L1) inhibitors, on epilepsy. Results: The analysis demonstrated that a higher expression of HMGCR was associated with an elevated risk of various types of epilepsy, including all types (OR = 1.17, 95% CI:1.03 to 1.32, p = 0.01), focal epilepsy (OR = 1.24, 95% CI:1.08 to 1.43, p = 0.003), and focal epilepsy documented with lesions other than hippocampal sclerosis (OR = 1.05, 95% CI: 1.01 to 1.10, p = 0.02). The risk of juvenile absence epilepsy (JAE) was also associated with higher expression of PCSK9 (OR = 1.06, 95% CI: 1.02 to 1.09, p = 0.002). For other relationships, there was no reliable supporting data available. Conclusion: The drug target MR investigation suggests a possible link between reduced epilepsy vulnerability and HMGCR and PCSK9 inhibition.

4.
J Fish Dis ; 47(4): e13919, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38217353

RESUMEN

Aeromonas jandaei is a gram-negative bacterium commonly found in aquatic environments and can induce illnesses in amphibians, reptiles and aquatic animals. In this study, a strain of bacteria was isolated from the diseased Chinese soft-shell turtle (Pelodiscus sinensis), then named strain JDP-FX. This isolate was identified as A. jandaei after analysis of morphological, physiological and biochemical characteristics, as well as 16S rRNA and gyrB gene sequences. Virulence genetic testing further detected temperature-sensitive protease (eprCAI), type III secretion system (TTSS) (ascv), nuclease (nuc), cytotonic enterotoxin (alt) and serine proteinase (ser) in JDP-FX. Compared with healthy Chinese soft-shell turtle, the serum levels of total protein (TP), albumin (ALB) and globulin (GLB) were significantly decreased in the diseased Chinese soft-shell turtle, while, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) were significantly increased. Histopathological observations showed that multiple tissues, including intestinal mucosa, liver and kidney, were severely damaged in the diseased Chinese soft-shell turtle. Moreover, the diseased Chinese soft-shell turtle had significant cell degeneration, necrosis, sloughing and interstitial inflammatory cell infiltration. The pathogenicity of JDP-FX was tested via artificial infection. The median lethal dosage (LD50 ) of the strain was 1.05 × 105 colony forming units (CFU/g) per weight of Chinese soft-shell turtle. Drug susceptibility analysis revealed that JDP-FX was susceptible to ceftazidime, minocycline, cefoperazone, ceftriaxone and piperacillin. In addition, JDP-FX was resistant to doxycycline, florfenicol, sulfonamides, gentamicin, ampicillin and neomycin. Therefore, this study may provide guidance for further research into the diagnosis, prevention and treatment of JDP-FX infection.


Asunto(s)
Aeromonas , Enfermedades de los Peces , Tortugas , Animales , Tortugas/genética , Tortugas/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , China
5.
Diabetes Metab Res Rev ; 40(1): e3716, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37649398

RESUMEN

Type 1 diabetes is an autoimmune disease in which one's own immune system destroys insulin-secreting beta cells in the pancreas. This process results in life-long dependence on exogenous insulin for survival. Both genetic and environmental factors play a role in disease initiation, progression, and ultimate clinical diagnosis of type 1 diabetes. This review will provide background on the natural history of type 1 diabetes and the role of genetic factors involved in the complement system, as several recent studies have identified changes in levels of these proteins as the disease evolves from pre-clinical through to clinically apparent disease.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 1/genética , Páncreas/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo
6.
Phytomedicine ; 123: 155252, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056145

RESUMEN

BACKGROUND: Acute kidney injury (AKI) has high morbidity and mortality, which is manifested by inflammation and apoptosis. Effective treatment methods for AKI are currently lacking. OBJECTIVE: This study demonstrated the protecting effects of Madecassoside (MA) in the cisplatin- and hypoxia-reoxygenation-induced renal tubular epithelial cells in vitro and AKI mice in vivo. METHODS: In vivo AKI mouse models were established by inducing them with cisplatin and renal ischemia-reperfusion. In vitro injury models of mouse renal tubular epithelial cells were established by inducing them with cisplatin and hypoxia and reoxygenation, respectively. The mechanism of MA effects was further explored using molecular docking and RNA-sequencing. RESULTS: MA could significantly reduce kidney injury in the cisplatin-and renal ischemia-reperfusion (IRI)-induced AKI. Further validation in the two cellular models also showed that MA had protect effects. MA can alleviate AKI in vitro and in vivo by inhibiting inflammation, cell apoptosis, and oxidative stress. MA exhibited high permeability across the Caco-2 cell, can enter cells directly. Through RNA-seq and molecular docking analysis, this study further demonstrated that MA inhibits its activity by directly binding to JNK kinase, thereby inhibiting c-JUN mediated cell apoptosis and improving AKI. In addition, MA has better renal protective effects compared to curcumin and JNK inhibitor SP600125. CONCLUSION: The results demonstrate that MA might be a potential drug for the treatment of AKI and act through the JNK/c-JUN signaling pathway.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Triterpenos , Humanos , Ratones , Animales , Cisplatino/efectos adversos , Células CACO-2 , Simulación del Acoplamiento Molecular , Lesión Renal Aguda/inducido químicamente , Apoptosis , Riñón , Estrés Oxidativo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Isquemia , Inflamación/metabolismo , Hipoxia , Ratones Endogámicos C57BL
7.
Eur Respir J ; 63(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38097206

RESUMEN

BACKGROUND: Preserved ratio impaired spirometry (PRISm) is defined as a forced expiratory volume in 1 s (FEV1) <80% predicted and FEV1/forced vital capacity ≥0.70. PRISm is associated with respiratory symptoms and comorbidities. Our objective was to discover novel genetic signals for PRISm and see if they provide insight into the pathogenesis of PRISm and associated comorbidities. METHODS: We undertook a genome-wide association study (GWAS) of PRISm in UK Biobank participants (Stage 1), and selected single nucleotide polymorphisms (SNPs) reaching genome-wide significance for replication in 13 cohorts (Stage 2). A combined meta-analysis of Stage 1 and Stage 2 was done to determine top SNPs. We used cross-trait linkage disequilibrium score regression to estimate genome-wide genetic correlation between PRISm and pulmonary and extrapulmonary traits. Phenome-wide association studies of top SNPs were performed. RESULTS: 22 signals reached significance in the joint meta-analysis, including four signals novel for lung function. A strong genome-wide genetic correlation (rg) between PRISm and spirometric COPD (rg=0.62, p<0.001) was observed, and genetic correlation with type 2 diabetes (rg=0.12, p=0.007). Phenome-wide association studies showed that 18 of 22 signals were associated with diabetic traits and seven with blood pressure traits. CONCLUSION: This is the first GWAS to successfully identify SNPs associated with PRISm. Four of the signals, rs7652391 (nearest gene MECOM), rs9431040 (HLX), rs62018863 (TMEM114) and rs185937162 (HLA-B), have not been described in association with lung function before, demonstrating the utility of using different lung function phenotypes in GWAS. Genetic factors associated with PRISm are strongly correlated with risk of both other lung diseases and extrapulmonary comorbidity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Estudio de Asociación del Genoma Completo , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/genética , Diabetes Mellitus Tipo 2/genética , Pulmón , Volumen Espiratorio Forzado/genética , Espirometría , Capacidad Vital
8.
J Fish Dis ; 47(1): e13864, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37723838

RESUMEN

The Chinese revered a species of aquatic reptile known as Pelodiscus sinensis as both an edible and medicinal species. When artificially breeding, many deaths occurred at the farmed P. sinensis, mainly due to excessive breeding density, water contamination, and turtles biting each other secondary to bacterial infections. In this study, an isolate of gram-negative bacteria WH0623 was isolated from the liver and kidney of diseased P. sinensis to trace the potential pathogen of this disease. Based on biochemical characteristics and 16S rRNA gene sequencing analyses, this isolated strain of WH0623 was identified as Chryseobacterium indologenes. The strain's median lethal dose (LD50 ) was 3.3 × 105 colony-forming units (CFU)/g per fish weight tested using artificial infection. Histopathological analysis revealed pathological changes, including cell swelling, hyperaemia, and necrosis in many tissues. Antibiotic susceptibility tests revealed that the bacteria WH0623 was susceptible to doxycycline, sulphonamides, ceftazidime, norfloxacin, and ciprofloxacin. These antibiotics could treat the disease. In conclusion, the pathogen causing the death of farmed P. sinensis was isolated and identified, and a drug-sensitive test was conducted. Our findings contribute to the future diagnosis and treatment of the disease.


Asunto(s)
Enfermedades de los Peces , Tortugas , Animales , ARN Ribosómico 16S/genética , Enfermedades de los Peces/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Tortugas/genética
9.
Sci Total Environ ; 912: 169472, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38142999

RESUMEN

This study aims to explore the factors that influence the emission characteristics of multiple pollutants from non-road mobile machinery (NRMM) under real-world conditions and to establish a data-driven method for calculating accurate emission factors. This research focused on NRMM excavators meeting the third-stage emission standards and identified the actual work characteristics of 108 excavators in different scenarios based on a self-developed testing system for 368,000 h. Additionally, a portable emission testing system (PEMS) was used to study the instantaneous emission characteristics under different driving styles and modes for 10 EC210 excavators with the largest engineering construction inventory. The results showed that the average time proportions of idling, working, and moving modes for excavators were 21 %, 66 %, and 13 %, respectively. The results also revealed that the instantaneous emission rates of multiple pollutants varied significantly under different driving styles and modes. Driving style affected the hydraulic pump power change rate through hydraulic pilot pressure, and engine load surge caused turbocharger response delay and in-cylinder combustion deterioration, which affected pollutant emissions. Driving mode affected the emission characteristics of idling, high-speed idling, moving, and working modes of excavators through the external characteristics corresponding to the engine speed gear set. The data-driven method for calculating emission factors differed from the traditional method for most indicators to varying degrees. In terms of fuel-based emission factors (EFfs), except for the EFfNOx indicator, which was 7.859 % higher than the traditional method, the other three indicators were significantly lower than the traditional method. In terms of power-based emission factors (EFps), except for EFpPM and EFpPN, the other two indicators were much higher than the traditional method. EFpCO and EFpNOx were 7.93 % and 20.332 % higher than the traditional method, respectively. It is recommended to use the data-driven method based on the actual driving data distribution to provide scientific support for accurately establishing the emission inventory.

10.
Vet Q ; 43(1): 1-10, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38010068

RESUMEN

An outbreak of a disease with a high mortality rate occurred in a Chinese Softshell Turtle (Pelodiscus sinensis) farm in Hubei Province. This study isolated a highly pathogenic Bacillus cereus strain (Y271) from diseased P. sinensis. Y271 has ß hemolysis, containing both Hemolysin BL (hblA, hblC, and hblD), Non-hemolytic enterotoxin, NHE (nheA, nheB, and nheC), and Enterotoxin FM (entFM) genes. Y271 is highly pathogenic against P. sinensis with an LD50 = 6.80 × 103 CFU/g weight. B. cereus was detected in multiple tissues of the infected P. sinensis. Among them, spleen tissue showed the highest copy number density (1.54 ± 0.12 × 104 copies/mg). Multiple tissues and organs of diseased P. sinensis exhibited significant pathological damage, especially the spleen, liver, kidney, and intestine. It showed obvious tissue structure destruction, lesions, necrosis, red blood cells, and inflammatory cell infiltration. B. cereus proliferating in the spleen, liver, and other tissues was observed. The intestinal microbiota of the diseased P. sinensis was altered, with a greater abundance of Firmicutes, Fusobacterium, and Actinomyces than in the healthy group. Allobaculum, Rothia, Aeromonas, and Clostridium abundance were higher in the diseased group than in the healthy group. The number of unique microbial taxa (472) in the disease group was lower than that of the healthy group (705). Y271 was sensitive to multiple drugs, including florfenicol, enrofloxacin, neomycin, and doxycycline. B. cereus is the etiological agent responsible for the massive death of P. sinensis and reveals its potential risks during P. sinensis cultivation.


Asunto(s)
Bacillus cereus , Microbiología de Alimentos , Animales , Bacillus cereus/genética , Bacillus cereus/metabolismo , Enterotoxinas/análisis , Enterotoxinas/genética
11.
Sci Rep ; 13(1): 17680, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848499

RESUMEN

Despite the prognostic value of arterial stiffness (AS) and pulsatile hemodynamics (PH) for cardiovascular morbidity and mortality, epigenetic modifications that contribute to AS/PH remain unknown. To gain a better understanding of the link between epigenetics (DNA methylation) and AS/PH, we examined the relationship of eight measures of AS/PH with CpG sites and co-methylated regions using multi-ancestry participants from Trans-Omics for Precision Medicine (TOPMed) Multi-Ethnic Study of Atherosclerosis (MESA) with sample sizes ranging from 438 to 874. Epigenome-wide association analysis identified one genome-wide significant CpG (cg20711926-CYP1B1) associated with aortic augmentation index (AIx). Follow-up analyses, including gene set enrichment analysis, expression quantitative trait methylation analysis, and functional enrichment analysis on differentially methylated positions and regions, further prioritized three CpGs and their annotated genes (cg23800023-ETS1, cg08426368-TGFB3, and cg17350632-HLA-DPB1) for AIx. Among these, ETS1 and TGFB3 have been previously prioritized as candidate genes. Furthermore, both ETS1 and HLA-DPB1 have significant tissue correlations between Whole Blood and Aorta in GTEx, which suggests ETS1 and HLA-DPB1 could be potential biomarkers in understanding pathophysiology of AS/PH. Overall, our findings support the possible role of epigenetic regulation via DNA methylation of specific genes associated with AIx as well as identifying potential targets for regulation of AS/PH.


Asunto(s)
Aterosclerosis , Epigénesis Genética , Humanos , Epigenoma , Factor de Crecimiento Transformador beta3/genética , Medicina de Precisión , Estudio de Asociación del Genoma Completo , Metilación de ADN , Islas de CpG/genética , Aterosclerosis/genética
12.
HGG Adv ; 4(4): 100216, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37869564

RESUMEN

Transcriptome prediction models built with data from European-descent individuals are less accurate when applied to different populations because of differences in linkage disequilibrium patterns and allele frequencies. We hypothesized that methods that leverage shared regulatory effects across different conditions, in this case, across different populations, may improve cross-population transcriptome prediction. To test this hypothesis, we made transcriptome prediction models for use in transcriptome-wide association studies (TWASs) using different methods (elastic net, joint-tissue imputation [JTI], matrix expression quantitative trait loci [Matrix eQTL], multivariate adaptive shrinkage in R [MASHR], and transcriptome-integrated genetic association resource [TIGAR]) and tested their out-of-sample transcriptome prediction accuracy in population-matched and cross-population scenarios. Additionally, to evaluate model applicability in TWASs, we integrated publicly available multiethnic genome-wide association study (GWAS) summary statistics from the Population Architecture using Genomics and Epidemiology (PAGE) study and Pan-ancestry genetic analysis of the UK Biobank (PanUKBB) with our developed transcriptome prediction models. In regard to transcriptome prediction accuracy, MASHR models performed better or the same as other methods in both population-matched and cross-population transcriptome predictions. Furthermore, in multiethnic TWASs, MASHR models yielded more discoveries that replicate in both PAGE and PanUKBB across all methods analyzed, including loci previously mapped in GWASs and loci previously not found in GWASs. Overall, our study demonstrates the importance of using methods that benefit from different populations' effect size estimates in order to improve TWASs for multiethnic or underrepresented populations.


Asunto(s)
Estudio de Asociación del Genoma Completo , Transcriptoma , Humanos , Transcriptoma/genética , Sitios de Carácter Cuantitativo/genética , Frecuencia de los Genes , Desequilibrio de Ligamiento
13.
Biomed Pharmacother ; 168: 115653, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37812891

RESUMEN

The modulation of microglial polarization from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype shows promise as a therapeutic strategy for ischemic stroke. Quercetin, a natural flavonoid abundant in various plants, possesses anti-inflammatory, anti-apoptotic, and antioxidant properties. Nevertheless, its effect and underlying mechanism on microglia/macrophages M1/M2 polarization in the treatment of cerebral ischemia/reperfusion injury (CI/RI) remain poorly explored. In the current study, we observed that quercetin ameliorated neurological deficits, reduced infarct volume, decreased the number of M1 microglia/macrophages (CD16/32+/Iba1+), and enhanced the number of M2 microglia/macrophages (CD206+/Iba1+) after establishing the CI/RI model in rats. Subsequent in vivo and in vitro experiments indicated that quercetin downregulated M1 markers (CD86, iNOS, TNF-α, IL-1ß, and IL-6) and upregulated M2 markers (CD206, Arg-1, IL-10, and TGF-ß). Network pharmacology analysis and molecular docking revealed that the PI3K/Akt/NF-κB signaling pathway emerged as the core pathway. Western blot confirmed that quercetin upregulated the phosphorylation of PI3K and Akt, while alleviating the phosphorylation of IκBα and NF-κB both in vivo and in vitro. However, the PI3K inhibitor LY294002 reversed the effects of quercetin on M2 polarization and the expression of key proteins in the PI3K/Akt/NF-κB pathway in primary microglia after oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro. Collectively, our findings demonstrate that quercetin facilitates microglia/macrophages M2 polarization by modulating the PI3K/Akt/NF-κB signaling pathway in the treatment of CI/RI. These findings provide novel insights into the therapeutic mechanisms of quercetin in ischemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Ratas , Animales , FN-kappa B/metabolismo , Microglía , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quercetina/farmacología , Quercetina/uso terapéutico , Quercetina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Simulación del Acoplamiento Molecular , Transducción de Señal , Macrófagos/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/metabolismo , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo
14.
Pharmacol Res ; 197: 106950, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37820854

RESUMEN

Kidney disease can be caused by various internal and external factors that have led to a continual increase in global deaths. Current treatment methods can alleviate but do not markedly prevent disease development. Further research on kidney disease has revealed the crucial function of epigenetics, especially acetylation, in the pathology and physiology of the kidney. Histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyllysine readers jointly regulate acetylation, thus affecting kidney physiological homoeostasis. Recent studies have shown that acetylation improves mechanisms and pathways involved in various types of nephropathy. The discovery and application of novel inhibitors and activators have further confirmed the important role of acetylation. In this review, we provide insights into the physiological process of acetylation and summarise its specific mechanisms and potential therapeutic effects on renal pathology.


Asunto(s)
Enfermedades Renales , Humanos , Acetilación , Enfermedades Renales/tratamiento farmacológico , Riñón , Epigénesis Genética , Epigenómica
15.
Front Immunol ; 14: 1244373, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37736100

RESUMEN

Introduction: China experienced a record surge of coronavirus disease 2019 cases in December 2022, during the pandemic. Methods: We conducted a randomized, parallel-controlled prospective cohort study to evaluate efficacy and antibody duration after a fourth-dose booster with Ad5-nCoV or inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. Results: A total of 191 participants aged ≥18 years who had completed a three-dose regimen of the inactivated SARS-CoV-2 vaccine 6 months earlier were recruited to receive the intramuscular Ad5-nCoV booster or the inactivated SARS-CoV-2 vaccine. The Ad5-nCoV group had significantly higher antibody levels compared with the inactivated vaccine group at 6 months after the fourth vaccination dose. After the pandemic, the breakthrough infection rate for the Ad5-nCoV and the inactivated vaccine groups was 77.89% and 78.13%, respectively. Survival curve analysis (p = 0.872) and multivariable logistic regression analysis (p = 0.956) showed no statistically significant differences in breakthrough infection between the two groups. Discussion: Compared with a homologous fourth dose, a heterologous fourth dose of Ad5-nCoV elicited a higher immunogenic response in healthy adults who had been immunized with three doses of inactivated vaccine. Nevertheless, the efficacy of the two vaccine types was equivalent after the pandemic.


Asunto(s)
Infección Irruptiva , Vacunas contra la COVID-19 , COVID-19 , Adolescente , Adulto , Humanos , Anticuerpos/inmunología , Infección Irruptiva/epidemiología , Infección Irruptiva/inmunología , Infección Irruptiva/prevención & control , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/uso terapéutico , Pueblos del Este de Asia , Estudios Prospectivos , SARS-CoV-2 , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/uso terapéutico , Eficacia de las Vacunas , Inmunización Secundaria , Anticuerpos Antivirales/inmunología , China/epidemiología , Pandemias/estadística & datos numéricos , Brotes de Enfermedades/estadística & datos numéricos
17.
Accid Anal Prev ; 193: 107287, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37729750

RESUMEN

Understanding how built environment are associated with crash risk (CR) in school commuting is essential to improving travel safety through land use and transportation policies. Scholars often assume that this relationship is consistent across space, but this may lead to inconsistent estimates. To address this issue, using data in Shenzhen, China, the data covers traffic accident data of children taken from police incident reports and supplemented with local land use, transportation network and specific school information. The measurement model of crash scale was conducted to represent crash severity, and the CR was further quantified. The study applies three models, spatial dubin model (SDM), geographically weighted regression (GWR), and mixed GWR (MGWR), to explore spatio-temporal heterogeneity relationships between built environment attributes and CR of children in school commuting. The findings reveal that the crash scale can better represent crash severity of school commuting than a single indicator. Policy interventions should be targeted at specific spatial scales, school types, and time windows to effectively improve travel safety. However, there are some common findings. It is recommended to use a scale of 200 m to explain the relationship between the variables. The MGWR model outperforms the other two models. To reduce CR, it is important to consider lower road network density, a reasonable layout of educational facilities, fewer bus routes, and more on-street parking spaces. Our findings can help to enrich the understanding of associations between land use and CR of children, as well as offer local planning and operating guidance for creating child-friendly environment.

18.
Sci Rep ; 13(1): 13767, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612462

RESUMEN

Neuroinflammation manifests following injury to the central nervous system (CNS) and M1/M2 polarization of microglia is closely associated with the development of this neuroinflammation. In this study, multiple databases were used to collect targets regarding luteolin and microglia polarization. After obtaining a common target, a protein-protein interaction (PPI) network was created and further analysis was performed to obtain the core network. Molecular docking of the core network with luteolin after gene enrichment analysis. In vitro experiments were used to examine the polarization of microglia and the expression of related target proteins. A total of 77 common targets were obtained, and the core network obtained by further analysis contained 38 proteins. GO and KEGG analyses revealed that luteolin affects microglia polarization in regulation of inflammatory response as well as the interleukin (IL)-17 and tumor necrosis factor (TNF) signaling pathways. Through in vitro experiments, we confirmed that the use of luteolin reduced the expression of inducible nitric oxide synthase (iNOS), IL-6, TNF-α, p-NFκBIA (p-IκB-α), p-NFκB p65, and MMP9, while upregulating the expression of Arg-1 and IL-10. This study reveals various potential mechanisms by which luteolin induces M2 polarization in microglia to inhibit the neuroinflammatory response.


Asunto(s)
Luteolina , Microglía , Humanos , Luteolina/farmacología , Farmacología en Red , Simulación del Acoplamiento Molecular , Enfermedades Neuroinflamatorias
19.
Cell Death Discov ; 9(1): 297, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582760

RESUMEN

Cell fate and proliferation ability can be transformed through reprogramming technology. Reprogramming glioblastoma cells into neuron-like cells holds great promise for glioblastoma treatment, as it induces their terminal differentiation. NeuroD4 (Neuronal Differentiation 4) is a crucial transcription factor in neuronal development and has the potential to convert astrocytes into functional neurons. In this study, we exclusively employed NeuroD4 to reprogram glioblastoma cells into neuron-like cells. In vivo, the reprogrammed glioblastoma cells demonstrated terminal differentiation, inhibited proliferation, and exited the cell cycle. Additionally, NeuroD4 virus-infected xenografts exhibited smaller sizes compared to the GFP group, and tumor-bearing mice in the GFP+NeuroD4 group experienced prolonged survival. Mechanistically, NeuroD4 overexpression significantly reduced the expression of SLC7A11 and Glutathione peroxidase 4 (GPX4). The ferroptosis inhibitor ferrostatin-1 effectively blocked the NeuroD4-mediated process of neuron reprogramming in glioblastoma. To summarize, our study demonstrates that NeuroD4 overexpression can reprogram glioblastoma cells into neuron-like cells through the SLC7A11-GSH-GPX4 signaling pathway, thus offering a potential novel therapeutic approach for glioblastoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...