Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Sheng Wu Gong Cheng Xue Bao ; 40(2): 434-445, 2024 Feb 25.
Artículo en Chino | MEDLINE | ID: mdl-38369831

RESUMEN

Protein is fundamental to life, as it generates protein variants. The maintenance of a dynamic equilibrium in these protein variants, known as protein homeostasis, is crucial for cellular function. Various factors, both endogenous and exogenous, can disrupt protein homeostasis during protein synthesis. These factors include translational error, and biological functions mediated by regulatory factors, and more. When cell accumulate proteins with folding errors, it impairs protein homeostasis, leading to the development of related diseases. In response to protein folding errors, multiple monitoring mechanisms are activated to mediate pathways that sustain the dynamic equilibrium. This review highlights the complex relationships within the proteostasis network, which are influenced by a variety of factors. These insights potentially provide new directions for studying diseases caused by protein synthesis errors.


Asunto(s)
Pliegue de Proteína , Proteostasis , Proteostasis/fisiología , Proteínas/genética , Proteínas/metabolismo , Biosíntesis de Proteínas
2.
Int Immunopharmacol ; 129: 111618, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38354508

RESUMEN

BACKGROUND: Acute hepatitis is a progressive inflammatory disorder that can lead to liver failure. Endothelial permeability is the vital pathophysiological change involved in infiltrating inflammatory factors. DDX24 has been implicated in immune signaling. However, the precise role of DDX24 in immune-mediated hepatitis remains unclear. Here, we investigate the phenotype of endothelium-targeted Ddx24 conditional knockout mice with Concanavalin A (ConA)-induced hepatitis. METHODS: Mice with homozygous endothelium-targeted Ddx24 conditional knockout (Ddx24flox/flox; Cdh5-Cre+) were established using the CRISPR/Cas9 mediated Cre-loxP system. We investigated the biological functions of endothelial cells derived from transgenic mice and explored the effects of Ddx24 in mice with ConA-induced hepatitis in vivo. The mass spectrometry was performed to identify the differentially expressed proteins in liver tissues of transgenic mice. RESULT: We successfully established mice with endothelium-targeted Ddx24 conditional knockout. The results showed migration and tube formation potentials of murine aortic endothelial cells with DDX24 silencing were significantly promoted. No differences were observed between Ddx24flox/flox; Cdh5-Cre+ and control regarding body weight and length, pathological tissue change and embryogenesis. We demonstrated Ddx24flox/flox; Cdh5-Cre+ exhibited exacerbation of ConA-induced hepatitis by up-regulating TNF-α and IFN-γ. Furthermore, endothelium-targeted Ddx24 conditional knockout caused vascular hyper-permeability in ConA-injected mice by down-regulating vascular integrity-associated proteins. Mechanistically, we identified Ddx24 might regulate immune-mediated hepatitis by inflammation-related permeable barrier pathways. CONCLUSION: These findings prove that endothelium-targeted Ddx24 conditional knockout exacerbates ConA-induced hepatitis in mice because of vascular hyper-permeability. The findings indicate a crucial role of DDX24 in regulating immune-mediated hepatitis, suggesting DDX24 as a potential therapeutic target in the disorder.


Asunto(s)
Células Endoteliales , Hepatitis , Animales , Ratones , Concanavalina A/toxicidad , Células Endoteliales/metabolismo , Endotelio/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
3.
J Org Chem ; 89(5): 3413-3418, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377573

RESUMEN

An efficient cascade intramolecular cyclization/intermolecular nucleophilic addition reaction of allenyl benzoxazinone with isatin or isatin-derived ketimine has been established by using Pd0-π-Lewis base catalysis. A series of 3-hydroxy-2-oxindoles and 3-amino-2-oxindoles with quaternary carbon atoms at the C3 position were synthesized in good yields under mild conditions through this protocol.

4.
J Nanobiotechnology ; 22(1): 7, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38166931

RESUMEN

Radionuclides internal radiotherapy (RIT) is a clinically powerful method for cancer treatment, but still poses unsatisfactory therapeutic outcomes due to the hypoxic characteristic of tumor microenvironment (TME). Catalase (CAT) or CAT-like nanomaterials can be used to enzymatically decompose TME endogenous H2O2 to boost TME oxygenation and thus alleviate the hypoxic level within tumors, but their effectiveness is still hindered by the short-lasting of hypoxia relief owing to their poor stability or degradability, thereby failing to match the long therapeutic duration of RIT. Herein, we proposed an innovative strategy of using facet-dependent CAT-like Pd-based two-dimensional (2D) nanoplatforms to continuously enhance RIT. Specifically, rationally designed 2D Pd@Au nanosheets (NSs) enable consistent enzymatic conversion of endogenous H2O2 into O2 to overcome hypoxia-induced RIT resistance. Furthermore, partially coated Au layer afford NIR-II responsiveness and moderate photothermal treatment that augmenting their enzymatic functionality. This approach with dual-effect paves the way for reshaping TME and consequently facilitating the brachytherapy ablation of cancer. Our work offers a significant advancement in the integration of catalytic nanomedicine and nuclear medicine, with the overarching goal of amplifying the clinical benefits of RIT-treated patients.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Peróxido de Hidrógeno , Microambiente Tumoral , Hipoxia/tratamiento farmacológico , Catálisis , Nanomedicina , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia
5.
Stroke ; 55(3): 576-585, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38214156

RESUMEN

BACKGROUND: Small dense low-density lipoprotein cholesterol (sdLDL-C) particles are more atherogenic than large and intermediate low-density lipoprotein cholesterol (LDL-C) subfractions. We sought to investigate the association of sdLDL-C and the sdLDL-C/LDL-C ratio with incident carotid plaques with stable and vulnerable morphology in rural China. METHODS: This community-based cohort study used data from the RICAS study (Rose Asymptomatic Intracranial Artery Stenosis), which enrolled 887 participants (aged ≥40 years) who were living in Kongcun Town, Pingyin County, Shandong, and free of carotid plaques and had no history of clinical stroke or transient ischemic attack at baseline (2017). Incident carotid plaques and their vulnerability were detected by carotid ultrasound at follow-up (2021). Multivariable logistic regression models were used to explore the association of sdLDL-C or sdLDL-C/LDL-C ratio with incident carotid plaques while adjusting for demographic factors, vascular risk factors, and follow-up time. RESULTS: Of the 887 participants (mean age [SD], 53.89 [8.67%] years; 54.34% women), 179 (20.18%) were detected with incident carotid plaques during an average follow-up of 3.94 years (SD=0.14). Higher sdLDL-C or sdLDL-C/LDL-C ratio, but not LDL-C, was significantly associated with an increased risk of incident carotid plaques. The upper tertile of sdLDL-C (versus lower tertile) was associated with the multivariate-adjusted odds ratio of 2.48 (95% CI, 1.00-6.15; P=0.049; P for linear trend=0.046) for carotid plaques with vulnerable morphology (n=41), and the association remained significant in participants with normal LDL-C (<130 mg/dL; n=693; upper versus lower tertile: odds ratio, 3.38 [95% CI, 1.15-9.90]; P=0.027; P for linear trend=0.025). Moreover, the sdLDL-C/LDL-C ratio was associated with a higher odds ratio of incident carotid plaques in participants without diabetes (P for interaction=0.014). CONCLUSIONS: Higher sdLDL-C was associated with an increased risk of incident carotid plaques, especially carotid plaques with vulnerable morphology, even in participants with normal LDL-C. This suggests the potential of sdLDL-C as a therapeutic target for stroke prevention. REGISTRATION: URL: https://www.chictr.org.cn; Unique identifier: ChiCTR1800017197.


Asunto(s)
Placa Aterosclerótica , Accidente Cerebrovascular , Humanos , Femenino , Niño , Masculino , LDL-Colesterol , Estudios de Cohortes , Estudios Prospectivos , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/epidemiología , Colesterol , Factores de Riesgo
6.
Nat Commun ; 14(1): 6736, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872169

RESUMEN

Neuro-inspired vision systems hold great promise to address the growing demands of mass data processing for edge computing, a distributed framework that brings computation and data storage closer to the sources of data. In addition to the capability of static image sensing and processing, the hardware implementation of a neuro-inspired vision system also requires the fulfilment of detecting and recognizing moving targets. Here, we demonstrated a neuro-inspired optical sensor based on two-dimensional NbS2/MoS2 hybrid films, which featured remarkable photo-induced conductance plasticity and low electrical energy consumption. A neuro-inspired optical sensor array with 10 × 10 NbS2/MoS2 phototransistors enabled highly integrated functions of sensing, memory, and contrast enhancement capabilities for static images, which benefits convolutional neural network (CNN) with a high image recognition accuracy. More importantly, in-sensor trajectory registration of moving light spots was experimentally implemented such that the post-processing could yield a high restoration accuracy. Our neuro-inspired optical sensor array could provide a fascinating platform for the implementation of high-performance artificial vision systems.

7.
iScience ; 26(8): 107287, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37539039

RESUMEN

Budd-Chiari syndrome (BCS) is characterized by hepatic venous outflow obstruction, posing life-threatening risks in severe cases. Reported risk factors include inherited and acquired hypercoagulable states or other predisposing factors. However, many patients have no identifiable etiology, and causes of BCS differ between the West and East. This study recruited 500 BCS patients and 696 normal individuals for whole-exome sequencing and developed a polygenic risk scoring (PRS) model using PLINK, LASSOSUM, BLUP, and BayesA methods. Risk factors for venous thromboembolism and vascular malformations were also assessed for BCS risk prediction. Ultimately, we discovered potential BCS risk mutations, such as rs1042331, and the optimal BayesA-generated PRS model presented an AUC >0.9 in the external replication cohort. This model provides particular insights into genetic risk differences between China and the West and suggests shared genetic risks among BCS, venous thromboembolism, and vascular malformations, offering different perspectives on BCS pathogenesis.

8.
J Basic Microbiol ; 63(10): 1106-1114, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37407515

RESUMEN

The nonstructural protein 5A (NS5A) of the bovine viral diarrhea virus (BVDV) is a monotopic membrane protein. This protein can anchor to the cell membrane by an in-plane amphipathic ⍺-helix, which participates in the viral replication complex. In this study, the effects of synonymous codon usage pattern of NS5A and the overall transfer RNA (tRNA) abundance in cells on the formation of the in-plane membrane anchor of NS5A were analyzed, based on NS5A coding sequences of different BVDV genotypes. BVDV NS5A coding sequences represent the most potential for BVDV genotyping. Moreover, the nucleotide usage of BVDV NS5A dominates the genotype-specific pattern of synonymous codon usage. There is an obvious relationship between synonymous codon usage bias and the spatial conformation of the in-plane membrane anchor. Furthermore, the overall tRNA abundance profiling displays that codon positions with a high level of tRNA abundance are more than ones with a low level of tRNA abundance in the in-plane membrane anchor, implying that high translation speed probably acts on the spatial conformation of in-plane membrane anchor of BVDV NS5A. These results give a new opinion on the effect of codon usage bias in the formation of the in-plane membrane anchor of BVDV NS5A.

9.
Sci Total Environ ; 894: 164528, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37268147

RESUMEN

Fine particles (PM2.5) are implicated as an important risk to cardiovascular health. N95 respirators had been widely used to provide protection by filtering particles. Yet the practical effects of wearing respirators have not been fully understood. This study aimed to evaluate the cardiovascular effects of respirator wearing against PM2.5 and underpin the understanding of the mechanisms of cardiovascular responses triggered by PM2.5. We conducted a randomized, double-blind crossover trial among 52 healthy adults in Beijing, China. Participants were exposed to outdoor PM2.5 for 2 h in alterations wearing true respirators (with membranes) or sham ones (without membranes). We measured ambient PM2.5 and tested the filtration efficiency of the respirators. We compared the heart rate variability (HRV), blood pressure and arterial stiffness indicators between the true respirator group and the sham respirator group. Concentrations of ambient PM2.5 during the 2-h exposure ranged from 4.9 to 255.0 µg/m3. The filtration efficiency of true respirators was 90.1 % and that of sham ones was 18.7 %. Between-group differences varied by pollution levels. On less polluted days (PM2.5< 75 µg/m3), participants wearing true respirators showed lower levels of HRV and higher levels of heart rate compared with those wearing sham respirators. These between-group differences were inconspicuous on heavily polluted days (PM2.5≥ 75 µg/m3). We found that a 10 µg/m3 increase in PM2.5 was associated with a 2.2 % to 6.4 % decrease in HRV, prominent at 1 h after the start of exposure. N95 respirators have good performance in reducing PM2.5 exposure. Short-term exposure to PM2.5 can induce very acute responses in autonomic nervous function. However, the overall effects of wearing respirators might be not always favorable to human health in terms of their inherent adverse effects, which seem dependent on the levels of air pollution. Precise individual protection recommendations warrant to be developed.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Sistema Cardiovascular , Adulto , Humanos , Material Particulado/efectos adversos , Material Particulado/análisis , Estudios Cruzados , Contaminación del Aire/análisis , Presión Sanguínea , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis
10.
Turk J Gastroenterol ; 34(6): 635-644, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37162505

RESUMEN

BACKGROUND: Identification of biomarkers to assist in the clinical management of hepatocellular carcinoma represents an urgent requirement. Fibulin-2 is known to contribute to the development and progression of various cancer types. This research investigated the role of fibulin-2 in hepatocellular carcinoma and explored the possible mechanisms. METHODS: The expression of fibulin-2 in hepatocellular carcinoma was measured by bioinformatic analysis and confirmed by western blot and immunohistochemical staining in cell lines or patients' samples. The clinicopathologic features of hepatocellular carcinoma patients was analyzed. Cell viability assays were used to explore the role of fibulin-2 on proliferation in hepatocellular carcinoma. Western blot was conducted to uncover changes of protein expression of Ras-MEK-ERK1/2 pathway when Fibulin-2 was overexpressed or silenced. Flow cytometry analyses were used to determine the roles of fibulin-2 in the function of apoptosis and cell cycle. Subcutaneous xenograft mouse models showed the tumor growth pattern after fibulin-2 silence in vivo. RESULTS: We reported the upregulation of fibulin-2 in most hepatocellular carcinoma tissues and cells lines. Fibulin-2 promoted the proliferation of hepatocellular carcinoma cells in vitro by regulating Ras-MEK-ERK1/2 signaling pathway, whereas knockdown of fibulin-2 incurred the opposite effect on proliferation. Consistently, knockdown of fibulin-2 resulted in increased apoptosis and induced growth arrest during the G0/G1 phase transition. In vivo xenograft assessment confirmed that knockdown of fibulin-2 inhibited hepatocellular carcinoma tumor growth. CONCLUSIONS: Fibulin-2 exhibited tumor promotor activities in malignant progression of hepatocellular carcinoma. The results of the study highlighted the potential of fibulin-2 to be utilized as a promising biomarker and therapeutic target for hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Proteínas de la Matriz Extracelular/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Apoptosis
11.
J Basic Microbiol ; 63(5): 499-518, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36782108

RESUMEN

Since African swine fever virus (ASFV) replication is closely related to its host's machinery, codon usage of viral genome can be subject to selection pressures. A better understanding of codon usage can give new insights into viral evolution. We implemented information entropy and revealed that the nucleotide usage pattern of ASFV is significantly associated with viral isolation factors (region and time), especially the usages of thymine and cytosine. Despite the domination of adenine and thymine in the viral genome, we found that mutation pressure alters the overall codon usage pattern of ASFV, followed by selective forces from natural selection. Moreover, the nucleotide skew index at the gene level indicates that nucleotide usages influencing synonymous codon bias of ASFV are significantly correlated with viral protein hydropathy. Finally, evolutionary plasticity is proved to contribute to the weakness in synonymous codons with A- or T-end serving as optimal codons of ASFV, suggesting that fine-tuning translation selection plays a role in synonymous codon usages of ASFV for adapting host. Taken together, ASFV is subject to evolutionary dynamics on nucleotide selections and synonymous codon usage, and our detailed analysis offers deeper insights into the genetic characteristics of this newly emerging virus around the world.


Asunto(s)
Virus de la Fiebre Porcina Africana , Uso de Codones , Animales , Porcinos , Virus de la Fiebre Porcina Africana/genética , Nucleótidos/genética , Timina , Evolución Molecular , Codón , Genómica , Sesgo
12.
Virus Res ; 324: 199038, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36599394

RESUMEN

Enterovirus A71 (EV-A71) is neurotropic and one of the primary enteric pathogens responsible for severe central nervous system infection in infants and young children. Neonatal mice are ideal models for studying the pathogenesis of infection caused by EV-A71. In this study, we assessed the susceptibility of neonatal BALB/c, C57BL/6, ICR, Kunming, and NIH mice to a clinically isolated EV-A71 strain. One-day-old mice were challenged with a clinical isolate of EV-A71 via intraperitoneal injection, then observed for 13 days for mortality, body-weight changes, and limb paralysis. RT-qPCR was performed to quantify viral RNA in the brain, spinal cord, skeletal muscle, and lungs of BALB/c and C57BL/6 mice. The expression of murine scavenger receptor class B member 2 (mSCARB2) was measured by western blotting. Finally, lesions were assessed by histological examination. We found that neonatal BALB/c and C57BL/6 mice were both susceptible to EV-A71, leading to decreased survival rate, greater body weight loss, and prominent hind-limb paralysis. Tissue viral loads of C57BL/6J mice were markedly higher than those of BALB/c mice, indicating that EV-A71 replicated more efficiently in C57BL/6 mice. Increased expression of mSCARB2 was observed 5 days after infection in C57BL/6 mice, which coincided with the peak in EV-A71 replication. Histological examination indicated that infection caused obvious pathogenic lesions. In conclusion, C57BL/6 are most susceptible to infection caused by EV-A71 and can be used as a model for studying its pathogenesis and test therapeutic options.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Animales , Ratones , Enterovirus/genética , Enterovirus Humano A/fisiología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Antígenos Virales/genética , Ratones Endogámicos BALB C
13.
J Mater Chem B ; 10(39): 8100, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36193693

RESUMEN

Correction for 'A self-activated cascade nanoreactor based on Pd-Ru/GOx for bacterial infection treatment' by Tianbao Zhu et al., J. Mater. Chem. B, 2022, https://doi.org/10.1039/d2tb01416e.

14.
Cancer Biol Ther ; 23(1): 1-14, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36310384

RESUMEN

Sorafenib (SFN) is a multi-kinase inhibitor drug for the treatment of advanced hepatocellular carcinoma (HCC), but its limited efficacy is a major obstacle to the clinical outcomes of patients with HCC. We aimed to explore a novel molecular mechanism underlying the chemosensitivity of HCC to SFN, and to identify a promising therapeutic target for HCC treatment. In this study, bioinformatic analysis revealed that DDX24 was associated with poor survival in HCC cases, and significantly related to the pathways modulating tumor development. DDX24 regulated HCC cell proliferation and migration potentials. Moreover, reduction of DDX24 promoted the sorafenib-mediated inhibition of HCC cell growth and migration, the elevation of sorafenib-induced HCC cell apoptosis. DDX24 overexpression suppressed the inhibitory effect of SFN on cell proliferation and migration and reduced the apoptosis induced by SFN. Further, DDX24, combined with SFN treatment, presented a synergistic enhancement of the sensitivity of SFN to the growth and migration of HCC cells via AKT/ERK and the epithelial-mesenchymal transition (EMT) pathways, and that it modulated apoptosis via the caspase/PARP pathway. Mechanistically, SNORA18 served as a target gene for DDX24, regulating the chemosensitivity of sorafenib-treated HCC cells. Furthermore, SNORA18 knockdown or overexpression could partially reverse the inhibition or elevation of cell viability, colony formation and migration induced by DDX24 in sorafenib-treated HCC cells, respectively. Collectively, our results suggest that DDX24 regulates the chemosensitivity of HCC to SFN by mediating the expression of SNORA18, which may act as an effective therapeutic target for improving SFN efficiency in HCC treatment.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenib/farmacología , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Proliferación Celular , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/farmacología
15.
Artículo en Inglés | MEDLINE | ID: mdl-36314479

RESUMEN

Immune checkpoint blockade (ICB) utilizing programmed death ligand-1 (PD-L1) antibody is a promising treatment strategy in solid tumors. However, in fact, more than half of hepatocellular carcinoma (HCC) patients are unresponsive to PD-L1-based ICB treatment due to multiple immune evasion mechanisms such as the hyperactivation of inflammation pathway, excessive tumor-associated macrophages (TAMs) infiltration, and insufficient infiltration of T cells. Herein, an inflammation-regulated nanodrug was designed to codeliver NF-κB inhibitor curcumin and PD-L1 antibody to reprogram the tumor microenvironment (TME) and activate antitumor immunity. The nanodrug accumulated in TME by an enhanced permeability and retention effect, where it left antibody to block PD-L1 on the membrane of tumor cells and TAMs due to pH-responsiveness. Simultaneously, a new curcumin-encapsulated nanodrug was generated, which was easily absorbed by either tumor cells or TAMs to inhibit the nuclear factor kappa-B (NF-κB) signal and related immunosuppressive genes. The inflammation-regulated nanodrug possessed good biocompatibility. Simultaneously, it reprogrammed TME effectively and exhibited an effective anticancer effect in immunocompetent mice. Overall, this study provided a potent strategy to improve the efficiency of ICB-based treatment for HCC.

16.
J Mater Chem B ; 10(38): 7827-7835, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36069527

RESUMEN

Enzyme cascade reactions that integrate natural enzymes and nanozymes have attracted intensive attention in biomedical studies. Nevertheless, it is still an important challenge to design simple, high-performance and safe cascade reaction systems. Herein, we constructed a cascade reactor Pd-Ru/GOx, in which two-dimensional Pd-Ru nanosheets (NSs) with excellent peroxidase (POD)-like activity were employed as a carrier for the covalent grafting of glucose oxidase (GOx) by glutaraldehyde coupling chemistry. The designed Pd-Ru/GOx cascade reactor possesses both GOx and POD-like activities and can not only transform non-toxic glucose into toxic hydroxyl radicals (˙OH) but also decrease the pH value of the reaction system to improve catalytic activity, achieving dual effects of cascade synergy and promotion. The in vitro and vivo experimental results manifested that Pd-Ru/GOx presented good antibacterial effects via the generation of reactive oxygen species (ROS). This work offers a simple strategy to construct a highly efficient and safe enzymatic cascade nanoreactor and holds tremendous promise for clinical bacterial infection control.


Asunto(s)
Infecciones Bacterianas , Glucosa Oxidasa , Antibacterianos/farmacología , Glucosa , Glutaral , Humanos , Plomo , Nanotecnología , Peroxidasas , Especies Reactivas de Oxígeno , Rutenio
17.
Front Microbiol ; 13: 959433, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118230

RESUMEN

The high morbidity of patients with coronavirus disease 2019 (COVID-19) brings on a panic around the world. COVID-19 is associated with sex bias, immune system, and preexisting chronic diseases. We analyzed the gene expression in patients with COVID-19 and in their microbiota in order to identify potential biomarkers to aid in disease management. A total of 129 RNA samples from nasopharyngeal, oropharyngeal, and anal swabs were collected and sequenced in a high-throughput manner. Several microbial strains differed in abundance between patients with mild or severe COVID-19. Microbial genera were more abundant in oropharyngeal swabs than in nasopharyngeal or anal swabs. Oropharyngeal swabs allowed more sensitive detection of the causative SARS-CoV-2. Microbial and human transcriptomes in swabs from patients with mild disease showed enrichment of genes involved in amino acid metabolism, or protein modification via small protein removal, and antibacterial defense responses, respectively, whereas swabs from patients with severe disease showed enrichment of genes involved in drug metabolism, or negative regulation of apoptosis execution, spermatogenesis, and immune system, respectively. Microbial abundance and diversity did not differ significantly between males and females. The expression of several host genes on the X chromosome correlated negatively with disease severity. In this way, our analyses identify host genes whose differential expression could aid in the diagnosis of COVID-19 and prediction of its severity via non-invasive assay.

18.
Int Ophthalmol ; 42(11): 3421-3430, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35960463

RESUMEN

PURPOSE: To identify the spectrum of RB1 gene mutations in 114 Chinese patients with retinoblastoma. METHODS: Genomic DNA was extracted from the peripheral blood of 114 Rb patients. Polymerase chain reactions (PCRs) followed by direct Sanger sequencing were used to screen for mutations in the RB1 gene, which contains 26 exons with flanking intronic sequences, except exon 15. Clinical data, including gender, age at diagnosis, laterality of ocular lesions, and associated symptoms, were recorded and compared. RESULTS: We identified five novel mutations in the RB1 gene. Twenty-five other mutations found in this study have been previously reported. A higher rate of RB1 mutations, with 47.3% of mutations among bilaterally affected patients vs. 6.8% within unilaterally affected patients, was also observed (p < 0.0001). Bilaterally affected patients were diagnosed earlier when compared to unilaterally affected patients (11 ± 7 months versus 20 ± 14 months, p = 0.0002). Furthermore, nonsense mutations were abundant (n = 14), followed by frameshift mutations (n = 8), splicing site mutations (n = 5), while missense mutations were few (n = 3). CONCLUSIONS: We found five novel mutations in RB1 genes, which expands the mutational spectrum of the gene. Children with bilateral Rb exhibited higher mutation rates and were diagnosed earlier than those with unilateral Rb. These findings will inform clinical diagnosis and genetic therapeutic targeting in Rb patients.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Humanos , Retinoblastoma/diagnóstico , Codón sin Sentido , Análisis Mutacional de ADN , Estudios de Asociación Genética , Mutación , Neoplasias de la Retina/diagnóstico , China/epidemiología , Ubiquitina-Proteína Ligasas/genética , Proteínas de Unión a Retinoblastoma/genética
19.
Cancer Med ; 11(23): 4513-4525, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35864588

RESUMEN

PURPOSE: Non-small cell lung cancer (NSCLC) is a leading cause of cancer death, and metastasis is a crucial determinant of increased cancer mortality. DDX24 has garnered increased attention due to its correlation with tumorigenesis and malignant progression. However, the correlation between DDX24 and NSCLC remains unclear. METHODS: DDX24 expression in NSCLC tissues and survival rate of patients was analyzed using bioinformatic analysis. Transwell assays, wound-healing assays, and tail vein lung colonization models were employed to determine the role of DDX24 in migration and invasion in vitro and in vivo. We searched for DDX24-interacting proteins using co-immunoprecipitation followed by mass spectroscopy and verified the interaction. The influence of DDX24 on RPL5 expression and ubiquitination was examined using protein stability assays. RESULTS: DDX24 expression was upregulated in NSCLC cell lines and tumors of patients, particularly those with high tumor grades. A high DDX24 level was also correlated with a poor prognosis. DDX24 upregulation enhanced the migration and invasion ability of NSCLC cells, whereas its downregulation had the opposite effects. In vivo xenograft experiments confirmed that tumors with high DDX24 expression had higher metastatic abilities. The interaction between DDX24 and RPL5 promoted its ubiquitination and destabilized it. CONCLUSIONS: DDX24 acted as a pro-tumorigenic factor and promoted metastasis in NSCLC. DDX24 interacted with RPL5 to promote its ubiquitination and degradation. As a result, targeting DDX24/RPL5 axis may provide a novel potential therapeutic strategy for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Movimiento Celular , Proliferación Celular , Línea Celular Tumoral , Ratones Desnudos , Carcinogénesis , Regulación Neoplásica de la Expresión Génica , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo
20.
Cancer Res ; 82(17): 3074-3087, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35763670

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies. Elucidating the underlying mechanisms of this disease could provide new therapeutic strategies for treating HCC. Here, we identified a novel role of DEAD-box helicase 24 (DDX24), a member of the DEAD-box protein family, in promoting HCC progression. DDX24 levels were significantly elevated in HCC tissues and were associated with poor prognosis of HCC. Overexpression of DDX24 promoted HCC migration and proliferation in vitro and in vivo, whereas suppression of DDX24 inhibited both functions. Mechanistically, DDX24 bound the mRNA618-624nt of laminin subunit beta 1 (LAMB1) and increased its stability in a manner dependent upon the interaction between nucleolin and the C-terminal region of DDX24. Moreover, regulatory factor X8 (RFX8) was identified as a DDX24 promoter-binding protein that transcriptionally upregulated DDX24 expression. Collectively, these findings demonstrate that the RFX8/DDX24/LAMB1 axis promotes HCC progression, providing potential therapeutic targets for HCC. SIGNIFICANCE: The identification of a tumor-promoting role of DDX24 and the elucidation of the underlying regulatory mechanism provide potential prognostic indicators and therapeutic approaches to help improve the outcome of patients with hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular , ARN Helicasas DEAD-box , Laminina , Neoplasias Hepáticas , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Laminina/genética , Laminina/metabolismo , Neoplasias Hepáticas/patología , Pronóstico , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...