Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
J Nanobiotechnology ; 22(1): 152, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575979

RESUMEN

Infected wound healing remains a challenging task in clinical practice due to several factors: (I) drug-resistant infections caused by various pathogens, (II) persistent inflammation that hinders tissue regeneration and (III) the ability of pathogens to persist intracellularly and evade antibiotic treatment. Microneedle patches (MNs), recognized for their effecacious and painless subcutaneous drug delivery, could greatly enhance wound healing if integrated with antibacterial functionality and tissue regenerative potential. A multifunctional agent with subcellular targeting capability and contained novel antibacterial components, upon loading onto MNs, could yield excellent therapeutic effects on wound infections. In this study, we sythesised a zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs) loaded with low molecular weight fucoidan (Fu) and further coating by hyaluronic acid (HA), obtained a multifunctional HAZ@Fu NPs, which could hinders Methicillin-resistant Staphylococcus aureus (MRSA) growth and promotes M2 polarization in macrophages. We mixed HAZ@Fu NPs with photocrosslinked gelatin methacryloyl (GelMA) and loaded it into the tips of the MNs (HAZ@Fu MNs), administered to mice model with MRSA-infected full-thickness cutaneous wounds. MNs are able to penetrate the skin barrier, delivering HAZ@Fu NPs into the dermal layer. Since cells within infected tissues extensively express the HA receptor CD44, we also confirmed the HA endows the nanoparticles with the ability to target MRSA in subcellular level. In vitro and in vivo murine studies have demonstrated that MNs are capable of delivering HAZ@Fu NPs deep into the dermal layers. And facilitated by the HA coating, HAZ@Fu NPs could target MRSA surviving at the subcellular level. The effective components, such as zinc ions, Fu, and hyaluronic acid could sustainably released, which contributes to antibacterial activity, mitigates inflammation, promotes epithelial regeneration and fosters neovascularization. Through the RNA sequencing of macrophages post co-culture with HAZ@Fu, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis reveals that the biological functionalities associated with wound healing could potentially be facilitated through the PI3K-Akt pathway. The results indicate that the synergistic application of HAZ@Fu NPs with biodegradable MNs may serve as a significant adjunct in the treatment of infected wounds. The intricate mechanisms driving its biological effects merit further investigation.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Polisacáridos , Infección de Heridas , Ratones , Animales , Ácido Hialurónico/farmacología , Fosfatidilinositol 3-Quinasas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Cicatrización de Heridas , Antiinfecciosos/farmacología , Infección de Heridas/tratamiento farmacológico , Inflamación
2.
Artículo en Inglés | MEDLINE | ID: mdl-38678391

RESUMEN

PURPOSE: The present study aimed to evaluate the functional outcomes of hip arthroscopy using a noninterportal capsulotomy technique to address labral tears in patients with borderline hip dysplasia (BHD). Additionally, we also compared these outcomes with those of patients with BHD who underwent the standard repaired interportal capsulotomy (RIPC) arthroscopy. METHODS: Data from patients with BHD were retrieved from a database of patients who underwent arthroscopic hip surgery with noninterportal capsulotomy or RIPC to treat labral tears between January 2014 and December 2020. Data collected included both pre- and postoperative patient-reported outcomes (PROs). RESULTS: A total of 58 patients (noninterportal capsulotomy, n = 37; RIPC, n = 21) with a mean age of 30.9 ± 5.6 and 28.6 ± 5.5 years, respectively, met the inclusion criteria. All of the patients underwent a minimal 2-year follow-up. The mean lateral centre-edge angle was 23.3 ± 1.2° in the noninterportal capsulotomy group and 23.7 ± 1.0° in the RIPC group, with no significant difference. The PROs improved from the preoperative to the latest follow-up, with a p < 0.001. There were no differences between the groups. CONCLUSION: Using strict patient selection criteria, hip arthroscopy with noninterportal capsulotomy demonstrated significant pre- to postoperative improvements in patients with BHD and achieved results comparable to those from hip arthroscopy with RIPC. LEVEL OF EVIDENCE: Level III.

3.
Growth Horm IGF Res ; 75: 101574, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503080

RESUMEN

OBJECTIVE: Insulin-like growth factor binding protein 7 (IGFBP7) has a strong affinity to insulin. This study aimed to evaluate the relationship between IGFBP7 and complications among type 2 diabetes mellitus (T2DM) patients. DESIGN: A total of 1449 T2DM patients were selected from a cross-sectional study for disease management registered in the National Basic Public Health Service in Changshu, China, and further tested for their plasma IGFBP7 levels. Logistic regressions and Spearman's rank correlation analyses were used to explore the associations of IGFBP7 with diabetic complications and clinical characteristics, respectively. RESULTS: Among the 1449 included T2DM patients, 403 (27.81%) had complications. In patients with shorter duration (less than five years), the base 10 logarithms of IGFBP7 concentration were associated with T2DM complications, with an adjusted odds ratio (OR) of 2.41 [95% confidence interval (95%CI) = 1.06-5.48]; while in patients with longer duration (more than five years), plasma IGFBP7 levels were not associated with T2DM complications. Furthermore, in T2DM patients with shorter duration, those with two or more types of complications were more likely to have higher levels of IGFBP7. CONCLUSION: IGFBP7 is positively associated with the risk of complication in T2DM patients with shorter duration.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus Tipo 2 , Humanos , China , Estudios Transversales , Complicaciones de la Diabetes/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Insulina
4.
Small ; : e2311033, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459643

RESUMEN

The re-tear rate of rotator cuff tears (RCT) after surgical repair is high, especially in aged patients with chronic tears. Senescent tendon stem cells (s-TSCs) generally exist in aged and chronically torn rotator cuff tendons and are closely associated with impaired tendon-to-bone healing results. The present study found a positive feedback cross-talk between s-TSCs and macrophages. The conditioned medium (CM) from s-STCs can promote macrophage polarization mainly toward the M1 phenotype, whose CM reciprocally accelerated further s-TSC senescence. Additional healthy tendon stem-cells derived exosomes (h-TSC-Exos) can break this positive feedback cross-talk by skewing macrophage polarization from the M1 phenotype to the M2 phenotype, attenuating s-TSCs senescence. S-TSC senescence acceleration or attenuation effects induced by M1 or M2 macrophages are associated with the inhibition or activation of the bone morphogenetic protein 4 signaling pathway following RNA sequencing analysis. Using an aged-chronic rotator cuff tear rat model, it is found that h-TSC-Exos can shift the microenvironment in the tendon-to-bone interface from a pro-inflammatory to an anti-inflammatory type at the acute postoperative stage and improve the tendon-to-bone healing results, which are associated with the rejuvenated s-TSCs. Therefore, this study proposed a potential strategy to improve the healing of aged chronic RCT.

5.
Int J Med Sci ; 21(3): 464-473, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250601

RESUMEN

Purpose: Osteoporosis (OP) and diabetes are prevalent diseases in orthopedic and endocrinology departments, with OP potentially arising as a complication of diabetes. However, the mechanism underlying diabetes-induced osteoporosis (DOP) remains enigmatic, and drug discovery in this domain is restricted, hindering research into the DOP's etiology and treatment. With the ultimate goal of preventing OP in diabetic patients, the objective of this study is to mine the genes and pathways linked to DOP using bioinformatics and databases. Method: The present study employed text mining as the initial approach to retrieve genes commonly associated with diabetes and OP. Subsequently, functional annotation was conducted to investigate the roles and functionalities. In order to explore the interactions between proteins relevant to DOP, we constructed protein-protein interaction (PPI) networks. Furthermore, to obtain key genes and candidate drugs for DOP treatment, we conducted drug-gene interaction (DGI) analysis, complemented by a thorough examination of transcriptional factors (TFs)-miRNA co-regulation. Results: The results through text mining revealed 110 genes that are commonly associated with both diabetes and OP. Subsequent enrichment analysis narrowed down the list to 95 symbols that were involved in PPI analysis. After DGI analysis, we identified 7 genes targeted by 11 drugs, which represent candidates for treating DOP. Conclusion: This study unveils ANDECALIXIMAB, SILTUXIMAB, OLOKIZUMAB, SECUKINUMAB, and IXEKIZUMAB as promising potential drugs for DOP treatment, demonstrating the significance of utilizing text mining and pathway analysis to investigate disease mechanisms and explore existing therapeutic options.


Asunto(s)
Diabetes Mellitus , MicroARNs , Humanos , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/genética , Biología Computacional , Minería de Datos , Descubrimiento de Drogas
6.
Small ; 20(7): e2303506, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37806770

RESUMEN

Aseptic loosening of prostheses is a highly researched topic, and wear particle-induced macrophage polarization is a significant cause of peri-prosthetic osteolysis. Exosomes derived from bone marrow mesenchymal stem cells (BMSCs-Exos) promote M2 polarization and inhibit M1 polarization of macrophages. However, clinical application problems such as easy clearance and lack of targeting exist. Exosomes derived from M2 macrophages (M2-Exos) have good biocompatibility, immune escape ability, and natural inflammatory targeting ability. M2-Exos and BMSCs-Exos fused exosomes (M2-BMSCs-Exos) are constructed, which targeted the osteolysis site and exerted the therapeutic effect of both exosomes. M2-BMSCs-Exos achieved targeted osteolysis after intravenous administration inhibiting M1 polarization and promoting M2 polarization to a greater extent at the targeted site, ultimately playing a key role in the prevention and treatment of aseptic loosening of prostheses. In conclusion, M2-BMSCs-Exos can be used as a precise and reliable molecular drug for peri-prosthetic osteolysis. Fused exosomes M2-BMSCs-Exos  were originally proposed and successfully prepared, and exosome fusion technology provides a new theoretical basis and solution for the clinical application of therapeutic exosomes.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Osteólisis , Humanos , Administración Intravenosa , Macrófagos
7.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(11): 1326-1334, 2023 Nov 15.
Artículo en Chino | MEDLINE | ID: mdl-37987040

RESUMEN

Objective: To investigate the accuracy, safety, and short-term effectiveness of a domestic robot-assisted system in total knee arthroplasty (TKA) by a multicenter randomized controlled trial. Methods: Between December 2021 and February 2023, 138 patients with knee osteoarthritis who received TKA in 5 clinical centers were prospectively collected, and 134 patients met the inclusion criteria were randomly assigned to either a trial group ( n=68) or a control group ( n=66). Seven patients had lost follow-up and missing data, so they were excluded and the remaining 127 patients were included for analysis, including 66 patients in the trial group and 61 patients in the control group. There was no significant difference ( P>0.05) in gender, age, body mass index, side, duration of osteoarthritis, Kellgren-Lawrence grading, preoperative Knee Society Score (KSS) and Western Ontario and McMaster University Osteoarthritis Index (WOMAC) score between the two groups. The trial group completed the TKA by domestic robot-assisted osteotomy according to the preoperative CT-based surgical planning. The control group was performed by traditional osteotomy plate combined with soft tissue release. Total operation time, osteotomy time of femoral/tibial side, intraoperative blood loss, and postoperative complications were recorded and compared between the two groups. The radiographs were taken at 5 and 90 days after operation, and hip-knee-ankle angle (HKA), lateral distal angle of femur (LDFA), and posterior tibial slope (PTS) were measured. The difference between the measured values of the above indexes at two time points after operation and the preoperative planning target values was calculated, and the absolute value (absolute error) was taken for comparison between the two groups. The postoperative recovery of lower limb alignment was judged and the accuracy was calculated. KSS score and WOMAC score were used to evaluate the knee joint function of patients before operation and at 90 days after operation. The improvement rates of KSS score and WOMAC score were calculated. The function, stability, and convenience of the robot-assisted system were evaluated by the surgeons. Results: The total operation time and femoral osteotomy time of the trial group were significantly longer than those of the control group ( P<0.05). There was no significant difference in the tibial osteotomy time and the amount of intraoperative blood loss between the two groups ( P>0.05). The incisions of both groups healed by first intention after operation, and there was no infection around the prosthesis. Nine patients in the trial group and 8 in the control group developed lower extremity vascular thrombosis, all of which were calf intermuscular venous thrombosis, and there was no significant difference in the incidence of complications ( P>0.05). All patients were followed up 90 days. There was no significant difference in KSS score and WOMAC score between the two groups at 90 days after operation ( P>0.05). There was significant difference in the improvement rate of KSS score between the two groups ( P<0.05), while there was no significant difference in the improvement rate of WOMAC score between the two groups ( P>0.05). Radiological results showed that the absolute errors of HKA and LDFA in the trial group were significantly smaller than those in the control group at 5 and 90 days after operation ( P<0.05), and the recovery accuracy of lower limb alignment was significantly higher than that in control group ( P<0.05). The absolute error of PTS in the trial group was significantly smaller than that in the control group at 5 days after operation ( P<0.05), but there was no significant difference at 90 days between the two groups ( P>0.05). The functional satisfaction rate of the robot-assisted system was 98.5% (65/66), and the satisfaction rates of stability and convenience were 100% (66/66). Conclusion: Domestic robot-assisted TKA is a safe and effective surgical treatment for knee osteoarthritis, which can achieve favorable lower limb alignment reconstruction, precise implant of prosthesis, and satisfactory functional recovery.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Prótesis de la Rodilla , Osteoartritis de la Rodilla , Robótica , Humanos , Artroplastia de Reemplazo de Rodilla/métodos , Osteoartritis de la Rodilla/cirugía , Pérdida de Sangre Quirúrgica , Articulación de la Rodilla/cirugía , Estudios Retrospectivos
8.
JMIR Public Health Surveill ; 9: e46385, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37934562

RESUMEN

BACKGROUND: Sleep is an important physiological behavior in humans that is associated with the occurrence and development of various diseases. However, the association of sleep duration with health-related outcomes, including obesity-related factors, musculoskeletal diseases, and mortality because of different causes, has not been systematically reported. OBJECTIVE: This study aims to systematically investigate the effect of sleep duration on health-related outcomes. METHODS: Overall, 54,664 participants with sleep information from 8 survey cycles of the National Health and Nutrition Examination Survey (2005-2020) were included in the analysis. Health-related outcomes comprised obesity-related outcomes (ie, BMI, obesity, waist circumference, and abdominal obesity), metabolism-related outcomes (ie, uric acid, hyperuricemia, and bone mineral density [BMD]), musculoskeletal diseases (ie, osteoarthritis [OA] and rheumatoid arthritis [RA]), and mortality because of different causes. The baseline information of participants including age, sex, race, educational level, marital status, total energy intake, physical activity, alcohol consumption, smoking, hypertension, and diabetes was also collected as covariates. Information about the metabolism index, disease status, and covariates was acquired from the laboratory, examination, and questionnaire data. Survival information, including survival status, duration, and cause of death, was obtained from the National Death Index records. Quantile regression models and Cox regression models were used for association analysis between sleep duration and health-related outcomes. In addition, the threshold effect analysis, along with smooth curve fitting method, was applied for the nonlinear association analysis. RESULTS: Participants were divided into 4 groups with different sleep durations. The 4 groups showed significant differences in terms of baseline data (P<.001). The quantile regression analysis indicated that participants with increased sleep duration showed decreased BMI (ß=-.176, 95% CI -.220 to -.133; P<.001), obesity (odds ratio [OR] 0.964, 95% CI 0.950-0.977; P<.001), waist circumference (ß=-.219, 95% CI -.320 to -.117; P<.001), abdominal obesity (OR 0.975, 95% CI 0.960-0.990; P<.001), OA (OR 0.965, 95% CI 0.942-0.990; P=.005), and RA (OR 0.940, 95% CI 0.912-0.968; P<.001). Participants with increased sleep duration also showed increased BMD (ß=.002, 95% CI .001-.003; P=.005), as compared with participants who slept <5.5 hours. A significant saturation effect of sleep duration on obesity, abdominal obesity, and hyperuricemia was detected through smooth curve fitting and threshold effect analysis (sleep duration>inflection point). In addition, a significant threshold effect of sleep duration on BMD (P<.001); OA (P<.001); RA (P<.001); and all-cause (P<.001), cardiovascular disease-cause (P<.001), cancer-cause (P=.005), and diabetes-cause mortality (P<.001) was found. The inflection point was between 6.5 hours and 9 hours. CONCLUSIONS: The double-edged sword effect of sleep duration on obesity-related outcomes, embolism-related diseases, musculoskeletal diseases, and mortality because of different causes was detected in this study. These findings provided epidemiological evidence that proper sleep duration may be an important factor in the prevention of multisystem diseases.


Asunto(s)
Diabetes Mellitus , Hiperuricemia , Enfermedades Musculoesqueléticas , Osteoartritis , Humanos , Encuestas Nutricionales , Obesidad Abdominal , Sueño , Obesidad
9.
J Nanobiotechnology ; 21(1): 398, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37904168

RESUMEN

The wear particle-induced dissolution of bone around implants is a significant pathological factor in aseptic loosening, and controlling prosthetic aseptic loosening holds crucial social significance. While human umbilical cord mesenchymal stem cell-derived exosomes (HucMSCs-Exos, Exos) have been found to effectively promote osteogenesis and angiogenesis, their role in periprosthetic osteolysis remains unexplored. To enhance their in vivo application, we engineered HucMSCs-Exos-encapsulated poly lactic-co-glycolic acid (PLGA) nanoparticles (PLGA-Exos). In our study, we demonstrate that PLGA-Exos stimulate osteogenic differentiation while inhibiting the generation of reactive oxygen species (ROS) and subsequent osteoclast differentiation in vitro. In vivo imaging revealed that PLGA-Exos released exosomes slowly and maintained a therapeutic concentration. Our in vivo experiments demonstrated that PLGA-Exos effectively suppressed osteolysis induced by polyethylene particles. These findings suggest that PLGA-Exos hold potential as a therapeutic approach for the prevention and treatment of periprosthetic osteolysis. Furthermore, they provide novel insights for the clinical management of osteolysis.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Nanopartículas , Osteólisis , Humanos , Osteogénesis , Osteólisis/inducido químicamente , Osteólisis/terapia , Polietileno/efectos adversos , Glicoles/efectos adversos , Cordón Umbilical
10.
Biomater Adv ; 154: 213624, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37716333

RESUMEN

The periosteum plays a critical role in bone development, shaping, remodeling, and fracture healing due to its abundance of osteoprogenitor cells, osteoblasts, and capillary network. However, the role of periosteum in bone injury healing has been underestimated, thus there is an urgent need to develop a multifunctional artificial periosteum that mimics the natural one. To tackle this issue, electrospinning technology was employed to fabricate an artificial periosteum composed of Poly-ε-caprolactone (PCL) doped with tantalum (Ta) and zinc oxide (ZnO) nanoparticles to enhance its antibacterial, osteogenic, and angiogenic properties. The in vitro cell experiments have demonstrated that the PCL/Ta/ZnO artificial periosteum exhibits excellent biocompatibility and can effectively facilitate osteogenic differentiation of BMSCs as well as angiogenic differentiation of EPCs. Antibacterial experiments have demonstrated the excellent bactericidal effects of PCL/Ta/ZnO artificial periosteum against both S. aureus and E. coli. The subcutaneous infection and critical-sized skull bone defect models have validated its in vivo properties of antibacterial activity, promotion of osteogenesis, and angiogenic potential. The PCL/Ta/ZnO artificial periosteum demonstrates remarkable efficacy in infection control and favorable immunomodulation, thereby achieving rapid vascularized bone repair. In conclusion, the utilization of PCL/Ta/ZnO tissue-engineered periosteum has been demonstrated to exhibit antibacterial properties, pro-vascularization effects, and promotion of osteogenesis at the site of bone defects. This promising approach could potentially offer effective treatment for bone defects.


Asunto(s)
Osteogénesis , Óxido de Zinc , Periostio , Óxido de Zinc/farmacología , Tantalio/farmacología , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacología
11.
Arthroscopy ; 39(12): 2529-2546.e1, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37683831

RESUMEN

PURPOSE: To investigate whether tranexamic acid (TXA) is cytotoxic in chondrocyte and cartilage tissues, as well as explore the mechanisms behind the possible toxicity in detail. METHODS: We detected the cell viability of chondrocytes in vitro and the change of morphology and specific in vivo contents of cartilage after TXA treatment. Furthermore, we detected apoptosis in cartilage. We used apoptosis-specific staining, reactive oxygen species detection, mitochondrial membrane potential detection, flow cytometry, and western blot for apoptosis detection. Finally, we detected the activation of endoplasmic reticulum stress (ERS) in TXA-treated chondrocytes to clarify the mechanism behind chondrocyte apoptosis. RESULTS: TXA presented an increasing toxic effect with increasing concentrations, especially in the 100 mg/mL group. In addition, we found that 50 mg/mL and 100 mg/mL TXA significantly increased apoptosis in cartilage and subchondral bone. TXA could induce chondrocyte apoptosis in cell and protein levels with reactive oxygen species generation and mitochondrial membrane depolarization. An apoptosis inhibitor could inhibit the induced apoptosis. Next, TXA induced calcium overload in chondrocytes and increased ERS-specific protein expression, whereas ERS inhibitor blocked ERS activation and further inhibited chondrocyte apoptosis. CONCLUSIONS: We concluded that TXA had a toxic effect on chondrocytes by inducing apoptosis through ERS activation, especially in 50 mg/mL and 100 mg/mL groups. We recommend TXA concentrations of less than 50 mg/mL in joint surgeries. CLINICAL RELEVANCE: It is still unclear whether TXA has a toxic effect on cartilage when topically used in joint surgeries. The concentration also varies. This study provides additional evidence that TXA at high concentrations will cause cartilage damage, which will help to provide a new understanding of the clinical administration of TXA.


Asunto(s)
Condrocitos , Ácido Tranexámico , Humanos , Ácido Tranexámico/farmacología , Especies Reactivas de Oxígeno , Apoptosis , Estrés del Retículo Endoplásmico
13.
FASEB J ; 37(9): e22987, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37555233

RESUMEN

Postmenopausal osteoporosis is associated with bone formation inhibition mediated by the impaired osteogenic differentiation potential of bone marrow mesenchymal stem cells (BMSCs). However, identifying and confirming the essential genes in the osteogenic differentiation of BMSCs and osteoporosis remain challenging. The study aimed at revealing the key gene that regulated osteogenic differentiation of BMSCs and led to osteoporosis, thus exploring its therapeutic effect in osteoporosis. In the present study, six essential genes related to the osteogenic differentiation of BMSCs and osteoporosis were identified, namely, fibrillin 2 (Fbn2), leucine-rich repeat-containing 17 (Lrrc17), heat shock protein b7 (Hspb7), high mobility group AT-hook 1 (Hmga1), nexilin F-actin-binding protein (Nexn), and endothelial cell-specific molecule 1 (Esm1). Furthermore, the in vivo and in vitro experiments showed that Hmga1 expression was increased during the osteogenic differentiation of rat BMSCs, while Hmga1 expression was decreased in the bone tissue of ovariectomized (OVX) rats. Moreover, the expression of osteogenic differentiation-related genes, the activity of alkaline phosphatase (ALP), and the number of mineralized nodules were increased after Hmga1 overexpression, which was partially reversed by a Wnt signaling inhibitor (DKK1). In addition, after injecting Hmga1-overexpressing lentivirus into the bone marrow cavity of OVX rats, the bone loss, and osteogenic differentiation inhibition of BMSCs in OVX rats were partially reversed, while osteoclast differentiation promotion of BMSCs in OVX rats was unaffected. Taken together, the present study confirms that Hmga1 prevents OVX-induced bone loss by the Wnt signaling pathway and reveals that Hmga1 is a potential gene therapeutic target for postmenopausal osteoporosis.


Asunto(s)
Células Madre Mesenquimatosas , Osteoporosis Posmenopáusica , Osteoporosis , Humanos , Femenino , Ratas , Animales , Osteogénesis , Vía de Señalización Wnt/genética , beta Catenina/metabolismo , Osteoporosis Posmenopáusica/genética , Osteoporosis Posmenopáusica/prevención & control , Osteoporosis Posmenopáusica/metabolismo , Lentivirus/genética , Osteoporosis/genética , Osteoporosis/prevención & control , Osteoporosis/tratamiento farmacológico , Factores de Transcripción/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Células Cultivadas
14.
Colloids Surf B Biointerfaces ; 230: 113506, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37572400

RESUMEN

Electrospinning technology, as a novel approach, has been extensively applied in the field of tissue engineering. Nanofiber membranes prepared by electrospinning can effectively mimic the structure and function of natural bone matrix, providing an ideal scaffold for attachment, proliferation, and differentiation of bone cells while inducing osteogenic differentiation and new bone formation. However, it lacks bioactivities such as osteoinduction, angiogenesis and the ability to promote nerve regeneration. In the presence of complex critical bone defects, a single component electrospun membrane often fails to suffice for bone repair needs. Based on this, we prepared a biofunctionalized membrane loaded with Tantalum(Ta)/Whitlockite(WH) nanoparticles (poly-ε-caprolactone (PCL)/Ta/WH) in order to promote high-quality bone defect repair through neurovascular coupling effect. According to the results of in vitro and in vivo experiments, the early Mg2+ release of WH can effectively increase the local nerve and vascular density, and synergize with Tantalum nanoparticles (TaNPs) to create a rich nerve-vascular microenvironment. This allows the PCL/Ta/WH membrane to repair bone defects in multiple dimensions and achieve high-quality repair of bone tissue, providing new solutions for the treatment of critical bone defects in clinical.


Asunto(s)
Nanopartículas , Acoplamiento Neurovascular , Osteogénesis , Andamios del Tejido/química , Tantalio/farmacología , Regeneración Ósea/fisiología , Ingeniería de Tejidos/métodos , Nanopartículas/química , Poliésteres/química
15.
Front Immunol ; 14: 1098683, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404817

RESUMEN

Introduction: Rheumatoid arthritis (RA) is an autoimmune disease and closely associated with both genetic and environmental factors. Volatile organic chemicals (VOC), a common environment pollutant, was associated with some autoimmune diseases, while whether VOC exposure or which VOC leads to RA is yet clarified. Methods: A cross-sectional study using data from the 6 survey cycles (2005-2006, 2011-2012, 2013-2014, 2015-2016, 2017-2018, 2017-2020) of NHANES program was performed. The RA or non-arthritis status of participant was identified through a questionnaire survey. The quantile logistic regression method was used for correlation analysis between VOC metabolites (VOCs) in urine and RA. The covariates included age, gender, race, educational level, marital status, total energy intake, physical activity, smoking, hypertension, diabetes, urine creatinine, albumin and marihuana use. Results: A total of 9536 participants (aged 20 to 85) with 15 VOCs, comprising 618 RA and 8918 non-arthritis participants, was finally included for analysis. Participants in the RA group showed higher VOCs in urine than that in the non-arthritis group. A positive association between 2 VOCs (AMCC: Q4: OR=2.173, 95%CI: 1.021, 4.627. 3HPMA: Q2: OR=2.286, 95%CI: 1.207 - 4.330; Q4: OR=2.663, 95%CI: 1.288 -5.508.) and RA was detected in the model 3, which was independent of all the covariates. The relative parent compounds of the two VOCs included N,N-Dimethylformamide and acrolein. Discussion: These findings suggested that the VOC exposure significantly associated with RA, providing newly epidemiological evidence for the establishment that environmental pollutants associated with RA. And also, more prospective studies and related experimental studies are needed to further validate the conclusions of this study.


Asunto(s)
Artritis Reumatoide , Contaminantes Ambientales , Compuestos Orgánicos Volátiles , Humanos , Estudios Transversales , Encuestas Nutricionales , Estudios Prospectivos , Artritis Reumatoide/epidemiología , Contaminantes Ambientales/efectos adversos
16.
Sci Total Environ ; 892: 164443, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37268133

RESUMEN

BACKGROUND: Accumulating epidemiological studies have demonstrated that smoking caused damage to human health. However, these studies almost focused on the individual smoking pattern rather than the toxic ingredients of tobacco smoke. Despite the exact accuracy of cotinine as a smoking exposure biomarker, there were few studies investigating the association between serum cotinine and human health. This study aimed to provide novel evidence about the harmful effect of smoking on systemic health from the perspective of serum cotinine. METHODS: All used data was acquired from 9 survey cycles (2003-2020) of the National Health and Nutrition Examination Survey (NHANES) program. The mortality information of participants was derived from the National Death Index (NDI) website. The disease status of participants, including respiratory, cardiovascular, and musculoskeletal diseases, was obtained from questionnaire surveys. The metabolism-related index, including obesity, bone mineral density (BMD), and serum uric acid (SUA), was obtained from examination data. Multiple regression methods, smooth curve fitting, and threshold effect models were used for association analyses. RESULTS: With a total of 53,837 subjects included, we detected an L-shaped association between serum cotinine and obesity-related index, a negative association between serum cotinine and BMD, a positive association between serum cotinine and nephrolith and coronary heart disease (CHD), a threshold effect of serum cotinine on hyperuricemia (HUA), osteoarthritis (OA), chronic obstructive pulmonary disease (COPD), and stroke, as well as a positive saturate effect of serum cotinine on asthma, rheumatoid arthritis (RA), all-cause, cardiovascular disease (CVD)-cause, cancer-cause, and diabetes-cause mortality. CONCLUSIONS: In this study, we investigated the association between serum cotinine and multiple health outcomes, indicating the systematic toxicity of smoking exposure. These findings provided novel epidemiological evidence about how passive exposure to tobacco smoke affects the health condition of the general US population.


Asunto(s)
Fumar , Contaminación por Humo de Tabaco , Humanos , Contaminación por Humo de Tabaco/efectos adversos , Encuestas Nutricionales , Cotinina , Ácido Úrico , Obesidad
17.
Mater Today Bio ; 19: 100569, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36846309

RESUMEN

The key to critical bone regeneration in tissue engineering relies on an ideal bio-scaffold coated with a controlled release of growth factors. Gelatin methacrylate (GelMA) and Hyaluronic acid methacrylate (HAMA) have been a novel topic of interest in bone regeneration while introducing appropriate nano-hydroxyapatite (nHAP) to improve its mechanical properties. And the exosomes derived from human urine-derived stem cells (human USCEXOs) have also been reported to promote osteogenesis in tissue engineering. The present study aimed to design a new GelMA-HAMA/nHAP composite hydrogel as a drug delivery system. The USCEXOs were encapsulated and slow-released in the hydrogel for better osteogenesis. The characterization of the GelMA-based hydrogel showed excellent controlled release performance and appropriate mechanical properties. The in vitro studies showed that the USCEXOs/GelMA-HAMA/nHAP composite hydrogel could promote the osteogenesis of bone marrow mesenchymal stem cells (BMSCs) and the angiogenesis of endothelial progenitor cells (EPCs), respectively. Meanwhile, the in vivo results confirmed that this composite hydrogel could significantly promote the defect repair of cranial bone in the rat model. In addition, we also found that USCEXOs/GelMA-HAMA/nHAP composite hydrogel can promote the formation of H-type vessels in the bone regeneration area, enhancing the therapeutic effect. In conclusion, our findings suggested that this controllable and biocompatible USCEXOs/GelMA-HAMA/nHAP composite hydrogel may effectively promote bone regeneration by coupling osteogenesis and angiogenesis.

18.
Adv Healthc Mater ; 12(15): e2300108, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36763493

RESUMEN

Osteochondral defect (OCD) regeneration remains challenging because of the hierarchy of the native tissue including both the articular cartilage and the subchondral bone. Constructing an osteochondral scaffold with biomimetic composition, structure, and biological functionality is the key to achieve its high-quality repair. In the present study, an injectable and 3D printable bilayered osteochondral hydrogel based on compositional gradient of methacrylated sodium alginate, gelatin methacryloyl, and ß-tricalcium phosphate (ß-TCP), as well as the biochemical gradient of kartogenin (KGN) in the two well-integrated zones of chondral layer hydrogel (CLH) and osseous layer hydrogel (OLH) is developed. In vitro and subcutaneous in vivo evaluations reveal that apart from the chondrogenesis of the embedded bone mesenchymal stem cells induced by CLH with a high concentration of KGN, a low concentration of KGN with ß-TCP in the OLH synergistically achieves superior osteogenic differentiation by endochondral ossification, instead of the intramembranous ossification using OLH with only ß-TCP. The biomimetic construct leveraging KGN as the only biochemical inducer can facilitate cartilage and subchondral bone restoration in the in vivo osteochondral defect. This one-stone-two-birds strategy opens up a new facile approach for OCD regeneration by exploiting the biological functions of the bioactive drug molecule KGN.


Asunto(s)
Cartílago Articular , Andamios del Tejido , Andamios del Tejido/química , Osteogénesis , Biomimética , Condrogénesis , Hidrogeles/farmacología , Hidrogeles/química , Ingeniería de Tejidos
19.
Acta Biomater ; 160: 297-310, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36773884

RESUMEN

Aseptic loosening of the prosthesis is a severe complication after joint replacement. It is of great practical significance and social value to discover the prevention and treatment strategies for this condition. Exosomes from urine-derived stem cells (Exos) have great potential in promoting bone repair, reconstruction, and regulating bone metabolism. However, they are easily eliminated by macrophages and incapable of targeting the osteolysis zone. In this study, based on macrophage "homing" into periprosthetic osteolysis region and cell membrane encapsulating nanotechnology, exosomes from urine-derived stem cells were encapsulated with macrophage membrane (MM) to prevent periprosthetic osteolysis. We found that macrophage membrane encapsulated urine-derived stem cell-derived exosomes (MM-Exos) can be targeted delivery to the osteolysis zone and enhance the therapeutic effectiveness of Exos, which alleviated wear particles-induced calvarial osteolysis. Furthermore, MM-Exos could provide immunological camouflage and allow the Exos to avoid phagocytosis by macrophages and stimulate cellular uptake by bone marrow-derived stem cells (BMSCs). Therefore, we demonstrated the unique ability of the macrophage membrane as a targeted transport of exosomes from urine-derived stem cells for the prevention and treatment of periprosthetic osteolysis. These biomimetic nanoparticles provided a new therapeutic exosome delivery system for preventing wear particles-induced osteolysis. STATEMENT OF SIGNIFICANCE: Macrophage membrane encapsulated urine-derived stem cell-derived exosomes (MM-Exos) can be targeted delivery to the osteolysis zone and enhance the therapeutic effect of Exos on peri­prosthetic osteolysis prevention. MM-Exos could allow the Exos to avoid phagocytosis by macrophages and promote the uptake of Exos by BMSCs.


Asunto(s)
Exosomas , Osteólisis , Humanos , Osteólisis/inducido químicamente , Células Madre , Exosomas/metabolismo , Membrana Celular , Macrófagos
20.
Hum Genomics ; 17(1): 11, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36793138

RESUMEN

BACKGROUND: While transcription factor (TF) regulation is known to play an important role in osteoblast development, differentiation, and bone metabolism, the molecular features of TFs in human osteoblasts at the single-cell resolution level have not yet been characterized. Here, we identified modules (regulons) of co-regulated genes by applying single-cell regulatory network inference and clustering to the single-cell RNA sequencing profiles of human osteoblasts. We also performed cell-specific network (CSN) analysis, reconstructed regulon activity-based osteoblast development trajectories, and validated the functions of important regulons both in vivo and in vitro. RESULTS: We identified four cell clusters: preosteoblast-S1, preosteoblast-S2, intermediate osteoblasts, and mature osteoblasts. CSN analysis results and regulon activity-based osteoblast development trajectories revealed cell development and functional state changes of osteoblasts. CREM and FOSL2 regulons were mainly active in preosteoblast-S1, FOXC2 regulons were mainly active in intermediate osteoblast, and RUNX2 and CREB3L1 regulons were most active in mature osteoblasts. CONCLUSIONS: This is the first study to describe the unique features of human osteoblasts in vivo based on cellular regulon active landscapes. Functional state changes of CREM, FOSL2, FOXC2, RUNX2, and CREB3L1 regulons regarding immunity, cell proliferation, and differentiation identified the important cell stages or subtypes that may be predominantly affected by bone metabolism disorders. These findings may lead to a deeper understanding of the mechanisms underlying bone metabolism and associated diseases.


Asunto(s)
Osteoblastos , Regulón , Humanos , Diferenciación Celular/genética , Regulación de la Expresión Génica , Osteoblastos/metabolismo , Regulón/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...