Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Materials (Basel) ; 17(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38793349

RESUMEN

Network microstructure titanium matrix composites (NMTMCs), featuring Ti6Al4V as the matrix and network-distributed TiB whiskers (TiBw) as reinforcement, exhibit remarkable potential for diverse applications due to their superior physical properties. Due to the difficulty in machining titanium matrix composites, electrical discharge machining (EDM) stands as one of the preferred machining techniques for NMTMCs. Nevertheless, the compromised surface quality and the recast layer significantly impact the performance of the workpiece machined by EDM. Therefore, for the purpose of enhancing the surface quality and restraining the defects of NMTMCs, this study conducted comparative EDM milling experiments between NMTMCs and Ti6Al4V to analyze the effects of discharge capacitance, charging current, and pulse interval on the surface roughness, recast layer thickness, recast layer uniformity, and surface microcrack density of both materials. The results indicated that machining energy significantly influences workpiece surface quality. Furthermore, comparative experiments exploring the influence of network reinforcement on EDM milling revealed that NMTMCs have a higher melting point, leading to an accumulation phenomenon in low-energy machining where the reinforcement could not be completely removed. The residual reinforcement in the recasting layer had an adsorption effect on molten metal affecting the thermal conductivity and uniformity within the recasting layer. Finally, specific guidelines are put forward for optimizing the material's surface roughness, recast layer thickness, and uniformity, along with minimizing microcrack density, which attain a processing effect that features a roughness of Ra 0.9 µm, an average recast layer thickness of 6 µm with a range of 8 µm, and a surface microcrack density of 0.08 µm-1.

2.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612642

RESUMEN

Vascular cognitive impairment and dementia (VCID) represents a broad spectrum of cognitive decline secondary to cerebral vascular aging and injury. It is the second most common type of dementia, and the prevalence continues to increase. Nuclear factor erythroid 2-related factor 2 (NRF2) is enriched in the cerebral vasculature and has diverse roles in metabolic balance, mitochondrial stabilization, redox balance, and anti-inflammation. In this review, we first briefly introduce cerebrovascular aging in VCID and the NRF2 pathway. We then extensively discuss the effects of NRF2 activation in cerebrovascular components such as endothelial cells, vascular smooth muscle cells, pericytes, and perivascular macrophages. Finally, we summarize the clinical potential of NRF2 activators in VCID.


Asunto(s)
Disfunción Cognitiva , Demencia Vascular , Humanos , Células Endoteliales , Factor 2 Relacionado con NF-E2 , Disfunción Cognitiva/etiología , Demencia Vascular/etiología
3.
BMC Cancer ; 24(1): 89, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38229014

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most aggressive malignant central nervous system tumor with a poor prognosis.The malignant transformation of glioma cells via epithelial-mesenchymal transition (EMT) has been observed as a main obstacle for glioblastoma treatment. Epithelial membrane protein 3 (EMP3) is significantly associated with the malignancy of GBM and the prognosis of patients. Therefore, exploring the possible mechanisms by which EMP3 promotes the growth of GBM has important implications for the treatment of GBM. METHODS: We performed enrichment and correlation analysis in 5 single-cell RNA sequencing datasets. Differential expression of EMP3 in gliomas, Kaplan-Meier survival curves, diagnostic accuracy and prognostic prediction were analyzed by bioinformatics in the China Glioma Genome Atlas (CGGA) database and The Cancer Genome Atlas (TCGA) database. EMP3-silenced U87 and U251 cell lines were obtained by transient transfection with siRNA. The effect of EMP3 on glioblastoma proliferation was examined using the CCK-8 assay. Transwell migration assay and wound healing assay were used to assess the effect of EMP3 on glioblastoma migration. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to detect the mRNA and protein expression levels of EMT-related transcription factors and mesenchymal markers. RESULTS: EMP3 is a EMT associated gene in multiple types of malignant cancer and in high-grade glioblastoma. EMP3 is enriched in high-grade gliomas and isocitrate dehydrogenase (IDH) wild-type gliomas.EMP3 can be used as a specific biomarker for diagnosing glioma patients. It is also an independent prognostic factor for glioma patients' overall survival (OS). In addition, silencing EMP3 reduces the proliferation and migration of glioblastoma cells. Mechanistically, EMP3 enhances the malignant potential of tumor cells by promoting EMT. CONCLUSION: EMP3 promotes the proliferation and migration of GBM cells, and the mechanism may be related to EMP3 promoting the EMT process in GBM; EMP3 may be an independent prognostic factor in GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patología , Pronóstico , Neoplasias Encefálicas/patología , Glioma/patología , Transición Epitelial-Mesenquimal/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo
4.
Front Immunol ; 14: 1265517, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822943

RESUMEN

Psoriasis is a complex, chronic autoimmune disorder predominantly affecting the skin. Accumulating evidence underscores the critical role of localized cellular inflammation in the development and persistence of psoriatic skin lesions, involving cell types such as keratinocytes, mesenchymal cells, and Schwann cells. However, the underlying mechanisms remain largely unexplored. Long non-coding RNAs (lncRNAs), known to regulate gene expression across various cellular processes, have been particularly implicated in immune regulation. We utilized our neural-network learning pipeline to integrate 106,675 cells from healthy human skin and 79,887 cells from psoriatic human skin. This formed the most extensive cell transcriptomic atlas of human psoriatic skin to date. The robustness of our reclassified cell-types, representing full-layer zonation in human skin, was affirmed through neural-network learning-based cross-validation. We then developed a publicly available website to present this integrated dataset. We carried out analysis for differentially expressed lncRNAs, co-regulated gene patterns, and GO-bioprocess enrichment, enabling us to pinpoint lncRNAs that modulate localized cellular inflammation in psoriasis at the single-cell level. Subsequent experimental validation with skin cell lines and primary cells from psoriatic skin confirmed these lncRNAs' functional role in localized cellular inflammation. Our study provides a comprehensive cell transcriptomic atlas of full-layer human skin in both healthy and psoriatic conditions, unveiling a new regulatory mechanism that governs localized cellular inflammation in psoriasis and highlights the therapeutic potential of lncRNAs in this disease's management.


Asunto(s)
Psoriasis , ARN Largo no Codificante , Humanos , Transcriptoma , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Psoriasis/patología , Piel/patología , Inflamación/genética , Inflamación/metabolismo
5.
Nat Metab ; 5(7): 1188-1203, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37414931

RESUMEN

Although multiple populations of macrophages have been described in the human liver, their function and turnover in patients with obesity at high risk of developing non-alcoholic fatty liver disease (NAFLD) and cirrhosis are currently unknown. Herein, we identify a specific human population of resident liver myeloid cells that protects against the metabolic impairment associated with obesity. By studying the turnover of liver myeloid cells in individuals undergoing liver transplantation, we find that liver myeloid cell turnover differs between humans and mice. Using single-cell techniques and flow cytometry, we determine that the proportion of the protective resident liver myeloid cells, denoted liver myeloid cells 2 (LM2), decreases during obesity. Functional validation approaches using human 2D and 3D cultures reveal that the presence of LM2 ameliorates the oxidative stress associated with obese conditions. Our study indicates that resident myeloid cells could be a therapeutic target to decrease the oxidative stress associated with NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/metabolismo , Células Mieloides/metabolismo , Estrés Fisiológico
6.
bioRxiv ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36993480

RESUMEN

The versatility of somatosensation arises from heterogeneous dorsal root ganglion (DRG) neurons. However, soma transcriptomes of individual human DRG (hDRG) neurons-critical in-formation to decipher their functions-are lacking due to technical difficulties. Here, we developed a novel approach to isolate individual hDRG neuron somas for deep RNA sequencing (RNA-seq). On average, >9,000 unique genes per neuron were detected, and 16 neuronal types were identified. Cross-species analyses revealed remarkable divergence among pain-sensing neurons and the existence of human-specific nociceptor types. Our deep RNA-seq dataset was especially powerful for providing insight into the molecular mechanisms underlying human somatosensation and identifying high potential novel drug targets. Our dataset also guided the selection of molecular markers to visualize different types of human afferents and the discovery of novel functional properties using single-cell in vivo electrophysiological recordings. In summary, by employing a novel soma sequencing method, we generated an unprecedented hDRG neuron atlas, providing new insights into human somatosensation, establishing a critical foundation for translational work, and clarifying human species-species properties.

7.
Cell Death Discov ; 9(1): 47, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36746934

RESUMEN

From in situ growth to invasive dissemination is the most lethal attribute of various tumor types. This transition is majorly mediated by the dynamic interplay between two cancer hallmarks, EMT and cell cycle. In this study, we applied nonlinear association analysis in 33 cancer types and found that most signaling receptors simultaneously associating with EMT and cell cycle are potential tumor suppressors. Here we find that a top co-associated receptor, Neogenin (NEO1), inhibits colorectal cancer (CRC) and Glioma in situ growth and metastasis by forming a complex with Merlin (NF2), and subsequent simultaneous promoting the phosphorylation of YAP. Furthermore, Neogenin protein level is associated with good prognosis and correlates with Merlin status in CRC and Glioma. Collectively, our results define Neogenin as a tumor suppressor in CRC and Glioma that acts by restricting oncogenic signaling by the Merlin-YAP pathway, and suggest Neogenin as a candidate therapeutic agent for CRC and Glioma.

8.
Vasc Endovascular Surg ; 57(4): 414-416, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36617851

RESUMEN

Accidental carotid artery injury is an uncommon but serious central venous catheter insertion complication. Hemostasis might not be readily achieved by manual compression; therefore, surgery or endovascular treatment remains the mainstay for accidental carotid artery injury. However, not all patients are suitable candidates for surgery.Vascular closure devices are widely used in femoral arteries to achieve hemostasis and early ambulation. The use of vascular closure devices is occasionally reported in other vascular beds. Here we present a case of an iatrogenic left common carotid artery injury treated by vascular closure device, which is of help in the future management of this complication.


Asunto(s)
Traumatismos de las Arterias Carótidas , Cateterismo Venoso Central , Dispositivos de Cierre Vascular , Humanos , Resultado del Tratamiento , Traumatismos de las Arterias Carótidas/diagnóstico por imagen , Traumatismos de las Arterias Carótidas/etiología , Traumatismos de las Arterias Carótidas/cirugía , Cateterismo Venoso Central/efectos adversos , Dispositivos de Cierre Vascular/efectos adversos , Enfermedad Iatrogénica , Suturas/efectos adversos , Arteria Femoral/diagnóstico por imagen , Arteria Femoral/cirugía , Técnicas de Sutura/efectos adversos
9.
Sci Adv ; 8(23): eabm6340, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35675414

RESUMEN

Glioblastoma is believed to originate from nervous system cells; however, a putative origin from vessel-associated progenitor cells has not been considered. We deeply single-cell RNA-sequenced glioblastoma progenitor cells of 18 patients and integrated 710 bulk tumors and 73,495 glioma single cells of 100 patients to determine the relation of glioblastoma cells to normal brain cell types. A novel neural network-based projection of the developmental trajectory of normal brain cells uncovered two principal cell-lineage features of glioblastoma, neural crest perivascular and radial glia, carrying defining methylation patterns and survival differences. Consistently, introducing tumorigenic alterations in naïve human brain perivascular cells resulted in brain tumors. Thus, our results suggest that glioblastoma can arise from the brains' vasculature, and patients with such glioblastoma have a significantly poorer outcome.

10.
Stem Cell Reports ; 17(5): 1089-1104, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35452595

RESUMEN

Humanized mouse models and mouse-adapted SARS-CoV-2 virus are increasingly used to study COVID-19 pathogenesis, so it is important to learn where the SARS-CoV-2 receptor ACE2 is expressed. Here we mapped ACE2 expression during mouse postnatal development and in adulthood. Pericytes in the CNS, heart, and pancreas express ACE2 strongly, as do perineurial and adrenal fibroblasts, whereas endothelial cells do not at any location analyzed. In a number of other organs, pericytes do not express ACE2, including in the lung where ACE2 instead is expressed in bronchial epithelium and alveolar type II cells. The onset of ACE2 expression is organ specific: in bronchial epithelium already at birth, in brain pericytes before, and in heart pericytes after postnatal day 10.5. Establishing the vascular localization of ACE2 expression is central to correctly interpret data from modeling COVID-19 in the mouse and may shed light on the cause of vascular COVID-19 complications.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Pericitos , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/complicaciones , Enfermedades Cardiovasculares/virología , Células Endoteliales , Ratones , Pericitos/metabolismo , SARS-CoV-2
11.
Cell Death Dis ; 12(5): 450, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33958582

RESUMEN

Psoriasis is the most common skin disease in adults. Current experimental and clinical evidences suggested the infiltrating immune cells could target local skin cells and thus induce psoriatic phenotype. However, recent studies indicated the existence of a potential feedback signaling loop from local resident skin cells to infiltrating immune cells. Here, we deconstructed the full-thickness human skins of both healthy donors and patients with psoriasis vulgaris at single cell transcriptional level, and further built a neural-network classifier to evaluate the evolutional conservation of skin cell types between mouse and human. Last, we systematically evaluated the intrinsic and intercellular molecular alterations of each cell type between healthy and psoriatic skin. Cross-checking with psoriasis susceptibility gene loci, cell-type based differential expression, and ligand-receptor communication revealed that the resident psoriatic skin cells including mesenchymal and epidermis cell types, which specifically harbored the target genes of psoriasis susceptibility loci, intensively evoked the expression of major histocompatibility complex (MHC) genes, upregulated interferon (INF), tumor necrosis factor (TNF) signalling and increased cytokine gene expression for primarily aiming the neighboring dendritic cells in psoriasis. The comprehensive exploration and pathological observation of psoriasis patient biopsies proposed an uncovered immunoregulatory axis from skin local resident cells to immune cells, thus provided a novel insight for psoriasis treatment. In addition, we published a user-friendly website to exhibit the transcriptional change of each cell type between healthy and psoriatic human skin.


Asunto(s)
Psoriasis/inmunología , Análisis de la Célula Individual/métodos , Piel/inmunología , Adulto , Animales , Humanos , Ratones
12.
Nat Commun ; 12(1): 2141, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837218

RESUMEN

Molecular characterization of the individual cell types in human kidney as well as model organisms are critical in defining organ function and understanding translational aspects of biomedical research. Previous studies have uncovered gene expression profiles of several kidney glomerular cell types, however, important cells, including mesangial (MCs) and glomerular parietal epithelial cells (PECs), are missing or incompletely described, and a systematic comparison between mouse and human kidney is lacking. To this end, we use Smart-seq2 to profile 4332 individual glomerulus-associated cells isolated from human living donor renal biopsies and mouse kidney. The analysis reveals genetic programs for all four glomerular cell types (podocytes, glomerular endothelial cells, MCs and PECs) as well as rare glomerulus-associated macula densa cells. Importantly, we detect heterogeneity in glomerulus-associated Pdgfrb-expressing cells, including bona fide intraglomerular MCs with the functionally active phagocytic molecular machinery, as well as a unique mural cell type located in the central stalk region of the glomerulus tuft. Furthermore, we observe remarkable species differences in the individual gene expression profiles of defined glomerular cell types that highlight translational challenges in the field and provide a guide to design translational studies.


Asunto(s)
Células Endoteliales/metabolismo , Mesangio Glomerular/metabolismo , Podocitos/metabolismo , Biosíntesis de Proteínas/genética , Transcriptoma/fisiología , Animales , Separación Celular , Biología Computacional , Citometría de Flujo , Heterogeneidad Genética , Mesangio Glomerular/citología , Humanos , Masculino , Ratones , RNA-Seq , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptores de Fosfolipasa A2/genética , Análisis de la Célula Individual , Especificidad de la Especie
13.
Nat Commun ; 12(1): 1510, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686078

RESUMEN

Distinct types of dorsal root ganglion sensory neurons may have unique contributions to chronic pain. Identification of primate sensory neuron types is critical for understanding the cellular origin and heritability of chronic pain. However, molecular insights into the primate sensory neurons are missing. Here we classify non-human primate dorsal root ganglion sensory neurons based on their transcriptome and map human pain heritability to neuronal types. First, we identified cell correlates between two major datasets for mouse sensory neuron types. Machine learning exposes an overall cross-species conservation of somatosensory neurons between primate and mouse, although with differences at individual gene level, highlighting the importance of primate data for clinical translation. We map genomic loci associated with chronic pain in human onto primate sensory neuron types to identify the cellular origin of chronic pain. Genome-wide associations for chronic pain converge on two different neuronal types distributed between pain disorders that display different genetic susceptibilities, suggesting both unique and shared mechanisms between different pain conditions.


Asunto(s)
Dolor Crónico/genética , Dolor Crónico/metabolismo , Células Receptoras Sensoriales/metabolismo , Transcriptoma , Animales , Femenino , Ganglios Espinales , Expresión Génica , Humanos , Macaca mulatta , Masculino , Ratones , Neuronas , Primates
14.
BMC Cancer ; 18(1): 1215, 2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30514230

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is the most malignant central nervous system tumor. Alkylating agent, temozolomide (TMZ), is currently the first-line chemotherapeutic agent for GBM. However, the sensitivity of GBM cells to TMZ is affected by many factors. And, several clinic trials, including co-administration of TMZ with other drugs, have failed in successful treatment of GBM. We have previously reported that Netrin-4 (NTN4), a laminin-like axon guidance protein, plays a protective role in GBM cell senescence upon TMZ-triggered DNA damage. However, the master regulator of NTN4 needs further elucidation. Epidermal growth factor/Epidermal growth factor receptor (EGF/EGFR) can modulate the expression of various extracellular matrix related molecules, and prevent DNA damage in GBM cells. In this study, we investigated the relationship between EGF/EGFR signaling and NTN4, and explored their effect on therapeutic efficacy in GBM cells upon TMZ treatment. METHODS: Co-expression analysis were performed by using the RNA sequencing data from NIH 934 cell lines and from single cell RNA sequencing data of GBM tumor. The co-expressing genes were used for GO enrichment and signaling pathway enrichment. mRNA expression of the target genes were quantified by qPCR, and cell senescence were investigated by Senescence-Associated Beta-Galactosidase Staining. Protein phosphorylation were observed and analyzed by immunoblotting. The RNA sequencing data and clinical information of TMZ treated patients were extracted from TCGA-glioblastoma project, and then used for Kaplan-Meier survival analysis. RESULTS: Analysis of RNA sequencing data revealed a potential co-expression relationship between NTN4 and EGFR. GO enrichment of EGFR-correlated genes indicated that EGFR regulates GBM cells in a manner similar to that in central nervous system development and neural cell differentiation. Pathway analysis suggested that EGFR and its related genes contribute to cell adhesion, extracellular matrix (ECM) organization and caspase related signaling. We also show that EGF stimulates NTN4 expression in GBM cells and cooperates with NTN4 to attenuate GBM cell senescence induced by DNA damage, possibly via AKT and ERK. Clinical analysis showed that co-expression of EGFR and NTN4 significantly predicts poor survival in TMZ-treated GBM patients. CONCLUSIONS: This study indicates that EGF/EGFR regulates and cooperates with NTN4 in DNA damage resistance in GBM. Therefore, our findings provide a potential therapeutic target for GBM.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Daño del ADN/fisiología , Factor de Crecimiento Epidérmico/biosíntesis , Glioblastoma/metabolismo , Netrinas/biosíntesis , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Senescencia Celular/fisiología , Factor de Crecimiento Epidérmico/genética , Receptores ErbB/biosíntesis , Receptores ErbB/genética , Glioblastoma/genética , Glioblastoma/patología , Humanos , Netrinas/genética , Regulación hacia Arriba/fisiología
15.
J Exp Clin Cancer Res ; 36(1): 9, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28069038

RESUMEN

BACKGROUND: Glioblastoma is an untreatable brain cancer. The tumors contain a population of stem-like cells which are highly invasive and resistant to therapies. These cells are the main reason for the lethality of glioblastoma. Extracellular guidance molecule netrin-1 promotes the invasiveness and survival of various cancer cell types. We have previously found that netrin-1 activates Notch signaling, and Notch signaling associates with cell stemness. Therefore, we have here investigated the effects of netrin-1 on glioblastoma pathogenesis and glioblastoma cell stemness. METHODS: Glioma tissue microarrays were stained with immunohistochemistry and the results were used to evaluate the association between netrin-1 and survival of glioma patients. The localization of netrin-1 was analyzed utilizing fresh frozen glioblastoma tissues. The glioma cell invasion was investigated using ex vivo glioma tissue cultures and newly established primary cell cultures in 3D in vitro invasion assays. Intracranial mouse xenograft models were utilized to investigate the effects of netrin-1 on glioblastoma growth and invasion in vivo. RESULTS: Netrin-1 expression associated with poor patient prognosis in grade II-III gliomas. In addition, its expression correlated with the stem-like cell marker nestin. Netrin-1 overexpression in cultured cells led to increased formation of stem-like cell spheroids. In glioblastoma tumor biopsies netrin-1 localized to hypoxic tumor areas known to be rich in the stem-like cells. In xenograft mouse models netrin-1 expression altered the phenotype of non-invasive glioblastoma cells into diffusively invading and increased the expression of glioma stem-like cell markers. Furthermore, a distinct invasion pattern where netrin-1 positive cells were following the invasive stem-like cells was detected both in mouse models and ex vivo human glioblastoma tissue cultures. Inhibition of netrin-1 signaling targeted especially the stem-like cells and inhibited their infiltrative growth. CONCLUSIONS: Our findings describe netrin-1 as an important regulator of glioblastoma cell stemness and motility. Netrin-1 activates Notch signaling in glioblastoma cells resulting in subsequent gain of stemness and enhanced invasiveness of these cells. Moreover, inhibition of netrin-1 signaling may offer a way to target stem-like cells.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Células Madre Neoplásicas/metabolismo , Netrina-1/metabolismo , Receptores Notch/metabolismo , Animales , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Humanos , Ratones , Clasificación del Tumor , Invasividad Neoplásica , Trasplante de Neoplasias , Pronóstico , Transducción de Señal , Análisis de Supervivencia , Análisis de Matrices Tisulares
16.
Mol Med Rep ; 12(5): 6969-75, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26397863

RESUMEN

Thymic dendritic cells (TDCs) are a type of dendritic cell (DC) in the thymus, which can enhance the proliferation of thymic T lymphocytes, regulate negative selection and induce central tolerance through autoantigen presentation. However, further investigations using TDCs has been restricted due to insufficient numbers. Therefore, an effective expansion method for TDCs in vitro is urgently required to further examine their biological characteristics. In the present study, a novel system was established using fetal thymus organ culture (FTOC) and a hanging drop culture system in the presence of fms­like tyrosine kinase 3 ligand (Flt3L), termed the Flt3L/FTOC system. TDCs were successfully generated and expanded from CD117+ bone marrow hematopoietic progenitor cells. Conventional DCs (cDCs; CD11c+B220­ DCs) and plasmacytoid DCs (pDCs; CD11c+B220+ DCs) were found in the TDCs generated using the Flt3L/FTOC system. These cells exhibited the specific morphological features of DCs, which were confirmed using Giemsa staining. Furthermore, the cytokine and surface marker profiles were also analyzed. Higher expression levels of interferon­α and interleukin­12 were observed in the pDCs, compared with the cDCs, and higher expression levels of toll­like receptor (TLR)7 and TLR9 were found in the pDCs than in the cDCs. In addition, the Flt3L/FTOC­derived TDCs also exhibited the ability to stimulate the allogenic T cell response. In conclusion, a novel in vitro culture system of thymic cDCs and pDCs using Flt3L was established, and this may provide a methodological basis for understanding the properties of TDCs.


Asunto(s)
Células Dendríticas/citología , Células Madre Hematopoyéticas/citología , Proteínas de la Membrana/inmunología , Proteínas Proto-Oncogénicas c-kit/inmunología , Timo/citología , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular , Células Cultivadas , Citocinas/análisis , Citocinas/inmunología , Células Dendríticas/inmunología , Femenino , Células Madre Hematopoyéticas/inmunología , Interferón-alfa/análisis , Interferón-alfa/inmunología , Interleucina-12/análisis , Interleucina-12/inmunología , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-kit/análisis , Timo/inmunología
17.
Int J Clin Exp Med ; 8(7): 11786-93, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26380019

RESUMEN

OBJECTIVE: This study aimed to investigate the characteristics of suspicious thyroid nodules of different pathological types on contrast-enhanced ultrasound (CEUS) with quantitative analysis software (Qlab). METHODS: A total of 101 suspicious thyroid nodules were recruited from 90 adult patients undergoing ultrasound (US), CEUS and fine-needle aspiration cytology (FNCA). The CEUS characteristics were quantitatively analyzed by investigators blind to the pathological information. RESULTS: In 68 benign thyroid nodules, the proportion of single nodules was higher (54.4%) than that of miliary nodules (n = 2-4), and most of them were identical-in, slow-out and hypoenhancement as compared to adjacent normal tissues. In 17 malignant thyroid nodules, most of them were slow-in, identical-out and more hypoenhancement as compared to adjacent normal tissues on CEUS. CONCLUSION: Benign thyroid nodules show identical-in, slow-out and hypoenhancement while malignant thyroid nodules have slow-in, identical-out and more hypoenhancement as compared to adjacent normal tissues on CEUS. Quantitative analysis of thyroid nodules on CEUS may help to identify suspicious nodules and select a proper treatment.

18.
PLoS One ; 8(11): e80363, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24265816

RESUMEN

Glioblastoma multiforme is the most common primary tumor of the central nervous system. The drug temozolomide (TMZ) prolongs lifespan in many glioblastoma patients. The sensitivity of glioblastoma cells to TMZ is interfered by many factors, such as the expression of O-6-methylguanine-DNA methyltransferase (MGMT) and activation of AKT signaling. We have recently identified the interaction between netrin-4 (NTN4) and integrin beta-4 (ITGB4), which promotes glioblastoma cell proliferation via activating AKT-mTOR signaling pathway. In the current work we have explored the effect of NTN4/ITGB4 interaction on TMZ induced glioblastoma cell senescence. We report here that the suppression of either ITGB4 or NTN4 in glioblastoma cell lines significantly enhances cellular senescence. The sensitivity of GBM cells to TMZ was primarily determined by the expression of MGMT. To omit the effect of MGMT, we concentrated on the cell lines devoid of expression of MGMT. NTN4 partially inhibited TMZ induced cell senescence and rescued AKT from dephosphorylation in U251MG cells, a cell line bearing decent levels of ITGB4. However, addition of exogenous NTN4 displayed no significant effect on TMZ induced senescence rescue or AKT activation in U87MG cells, which expressed ITGB4 at low levels. Furthermore, overexpression of ITGB4 combined with exogenous NTN4 significantly attenuated U87MG cell senescence induced by TMZ. These data suggest that NTN4 protects glioblastoma cells from TMZ induced senescence, probably via rescuing TMZ triggered ITGB4 dependent AKT dephosphorylation. This suggests that interfering the interaction between NTN4 and ITGB4 or concomitant use of the inhibitors of the AKT pathway may improve the therapeutic efficiency of TMZ.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Dacarbazina/análogos & derivados , Glioblastoma/genética , Glioblastoma/metabolismo , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Línea Celular Tumoral , Dacarbazina/farmacología , Relación Dosis-Respuesta a Droga , Expresión Génica , Silenciador del Gen , Humanos , Integrina beta4/genética , Integrina beta4/metabolismo , Netrinas , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Temozolomida
19.
J Cell Sci ; 126(Pt 11): 2459-69, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23549787

RESUMEN

Glioblastoma multiforme is an aggressively invasive human brain cancer, which lacks effective treatment. The axonal guidance protein, netrin-1, is overexpressed in glioblastoma tumor biopsies. In Matrigel invasion assays we observed that experimental overexpression of netrin-1 increased cell invasiveness and its downregulation decreased invasiveness. Using tandem affinity purification and mass spectrometry protein identification we found that netrin-1 forms a complex with both Notch2 and Jagged1. Recombinant netrin-1 colocalized with Jagged1 and Notch2 at the cell surface and was also present in the intracellular vesicles with Jagged1, but not with Notch2. Netrin-1 activated Notch signaling and subsequent glioblastoma cell invasion. Interestingly, the recombinant central domain of netrin-1 counteracted the effects of the full-length netrin-1: it inhibited glioblastoma cell invasion and Notch activation by retaining the Notch signaling complex at the cell surface. This finding may give rise to therapeutic applications. These results reveal a new mechanism leading to glioblastoma cell invasion, in which netrin-1 activates Notch signaling.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Glioblastoma/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Receptor Notch2/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Unión al Calcio/genética , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína Jagged-1 , Proteínas de la Membrana/genética , Invasividad Neoplásica , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/farmacología , Netrina-1 , Estructura Terciaria de Proteína , Receptor Notch2/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Proteínas Serrate-Jagged , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/farmacología
20.
Rheumatol Int ; 33(8): 2025-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23385982

RESUMEN

The aim of this study was to evaluate the feasibility of using power Doppler ultrasound (PDUS) to detect changes in the sacroiliac joint regions after infliximab (an anti-TNF-α blocker) treatment in active axial ankylosing spondylitis (AS) patients. A total of 110 sacroiliac joints in 55 patients with active AS were detected by PDUS before and after the infliximab treatment. The color flow signals inside the sacroiliac joints were observed, and the resistance index (RI) was measured. The clinical condition of the AS patients was improved compared with their condition before the infliximab treatment. Before the treatment, color flow signals were observed in 103 joints, and the mean RI value was 0.56 ± 0.06. Three months after the first infliximab treatment, color flow signals were observed in 50 joints, and the mean RI value was 0.87 ± 0.11. There were more blood flow signals in the sacroiliac joints before the infliximab treatment in patients with active AS (p < 0.01), and the mean RI value was higher after the infliximab treatment (p < 0.01). The blood flow signals in the sacroiliac joints became weaker or even disappeared and the RI values increased in patients with active sacroiliitis after infliximab treatment. This result shows that PDUS can be used in the follow-up of patients with axial AS.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antirreumáticos/uso terapéutico , Articulación Sacroiliaca/diagnóstico por imagen , Sacroileítis/diagnóstico por imagen , Espondilitis Anquilosante/complicaciones , Adulto , Estudios de Factibilidad , Femenino , Humanos , Infliximab , Masculino , Articulación Sacroiliaca/irrigación sanguínea , Sacroileítis/complicaciones , Sacroileítis/tratamiento farmacológico , Espondilitis Anquilosante/diagnóstico por imagen , Espondilitis Anquilosante/tratamiento farmacológico , Resultado del Tratamiento , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...