Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Sci Rep ; 14(1): 14343, 2024 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-38906929

RESUMEN

Non-small cell lung cancer (NSCLC)-originating cancer-associated fibroblasts (CAFs) expressing CD248 regulate interaction with immune cells to accelerate cancer progression. Epithelial-mesenchymal transition (EMT) is a key feature of metastatic cells. In our pervious study, we found that CD248+CAFs activated M2-polarized macrophages, enhancing the progression of NSCLC. However, it is yet unclear how CD248+CAFs inducing M2-polarized macrophages induce EMT program in NSCLC cells. Herein, we examined CD248 expression from CAFs derived from NSCLC patient tumour tissues. Furthermore, we determined the influence of CD248 knock down CAFs on macrophages polarization. Next, we explored the influences of CD248-harboring CAFs-mediated M2 macrophage polarization to promote NSCLC cells EMT in vitro. We constructed fibroblasts specific CD248 gene knock out mice to examine the significance of CD248-harboring CAFs-induced M2-polarized macrophages to promote NSCLC cells EMT in vivo. Based on our analysis, CD248 is ubiquitously expressed within NSCLC-originating CAFs. CD248+CAFs mediated macrophages polarized to M2 type macrophages. CD248+CAFs induced M2 macrophage polarization to enhance NSCLC cells EMT both in vivo and in vitro. Our findings indicate that CD248-harboring CAFs promote NSCLC cells EMT by regulating M2-polarized macrophages.


Asunto(s)
Antígenos CD , Fibroblastos Asociados al Cáncer , Carcinoma de Pulmón de Células no Pequeñas , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares , Macrófagos , Transición Epitelial-Mesenquimal/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Humanos , Animales , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Macrófagos/metabolismo , Ratones , Antígenos CD/metabolismo , Antígenos CD/genética , Ratones Noqueados , Línea Celular Tumoral , Antígenos de Neoplasias
2.
Int J Biol Macromol ; 272(Pt 1): 132856, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38834118

RESUMEN

Economically and efficiently removing organic pollutants from water is still a challenge in wastewater treatment. Utilizing environmentally friendly and readily available protein-based natural polymers to develop aerogels with effective removal performance and sustainable regeneration capability is a promising strategy for adsorbent design. Here, a robust and cost-effective method using inexpensive ß-lactoglobulin (BLG) as raw material was proposed to fabricate BLG-based aerogels. Firstly, photocurable BLG-based polymers were synthesized by grafting glycidyl methacrylate. Then, a cross-linking reaction, including photo-crosslinking and salting-out treatment, was applied to prepared BLG-based hydrogels. Finally, the BLG-based aerogels with high porosity and ultralight weight were obtained after freeze-drying. The outcomes revealed that the biocompatible BLG-based aerogels exhibited effective removal performance for a variety of organic pollutants under perfectly quiescent conditions, and could be regenerated and reused many times via a simple and rapid process of acid washing and centrifugation. Overall, this work not only demonstrates that BLG-based aerogels are promising adsorbents for water purification but also provides a potential way for the sustainable utilization of BLG.


Asunto(s)
Geles , Lactoglobulinas , Contaminantes Químicos del Agua , Purificación del Agua , Lactoglobulinas/química , Lactoglobulinas/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Geles/química , Adsorción , Porosidad , Hidrogeles/química , Agua/química , Compuestos Epoxi , Metacrilatos
3.
Int J Mol Sci ; 25(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791191

RESUMEN

Cancer immunotherapy relies on the insight that the immune system can be used to defend against malignant cells. The aim of cancer immunotherapy is to utilize, modulate, activate, and train the immune system to amplify antitumor T-cell immunity. In parallel, the immune system response to damaged tissue is also crucial in determining the success or failure of an implant. Due to their extracellular matrix mimetics and tunable chemical or physical performance, hydrogels are promising platforms for building immunomodulatory microenvironments for realizing cancer therapy and tissue regeneration. However, submicron or nanosized pore structures within hydrogels are not favorable for modulating immune cell function, such as cell invasion, migration, and immunophenotype. In contrast, hydrogels with a porous structure not only allow for nutrient transportation and metabolite discharge but also offer more space for realizing cell function. In this review, the design strategies and influencing factors of porous hydrogels for cancer therapy and tissue regeneration are first discussed. Second, the immunomodulatory effects and therapeutic outcomes of different porous hydrogels for cancer immunotherapy and tissue regeneration are highlighted. Beyond that, this review highlights the effects of pore size on immune function and potential signal transduction. Finally, the remaining challenges and perspectives of immunomodulatory porous hydrogels are discussed.


Asunto(s)
Hidrogeles , Neoplasias , Hidrogeles/química , Humanos , Porosidad , Animales , Neoplasias/terapia , Neoplasias/inmunología , Inmunoterapia/métodos , Inmunomodulación/efectos de los fármacos , Ingeniería de Tejidos/métodos , Agentes Inmunomoduladores/química , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/uso terapéutico , Microambiente Tumoral/inmunología
4.
J Cell Mol Med ; 28(4): e18185, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38396325

RESUMEN

Chemotherapy-resistant non-small cell lung cancer (NSCLC) presents a substantial barrier to effective care. It is still unclear how cancer-associated fibroblasts (CAFs) contribute to NSCLC resistance to chemotherapy. Here, we found that CD248+ CAFs released IL-8 in NSCLC, which, in turn, enhanced the cisplatin (CDDP) IC50 in A549 and NCI-H460 while decreasing the apoptotic percentage of A549 and NCI-H460 in vitro. The CD248+ CAFs-based IL-8 secretion induced NSCLC chemoresistance by stimulating nuclear factor kappa B (NF-κB) and elevating ATP-binding cassette transporter B1 (ABCB1). We also revealed that the CD248+ CAFs-based IL-8 release enhanced cisplatin chemoresistance in NSCLC mouse models in vivo. Relative to wild-type control mice, the CD248 conditional knockout mice exhibited significant reduction of IL-8 secretion, which, in turn, enhanced the therapeutic efficacy of cisplatin in vivo. In summary, our study identified CD248 activates the NF-κB axis, which, consecutively induces the CAFs-based secretion of IL-8, which promotes NSCLC chemoresistance. This report highlights a potential new approach to enhancing the chemotherapeutic potential of NSCLC-treating cisplatin.


Asunto(s)
Antineoplásicos , Fibroblastos Asociados al Cáncer , Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Interleucina-8 , Neoplasias Pulmonares , Animales , Ratones , Antígenos CD , Antígenos de Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Proliferación Celular , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Interleucina-8/genética , Interleucina-8/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , FN-kappa B , Humanos
5.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38003384

RESUMEN

In recent years, the non-covalent interactions between chalcogen centers have aroused substantial research interest because of their potential applications in organocatalysis, materials science, drug design, biological systems, crystal engineering, and molecular recognition. However, studies on π-hole-type chalcogen∙∙∙chalcogen interactions are scarcely reported in the literature. Herein, the π-hole-type intermolecular chalcogen∙∙∙chalcogen interactions in the model complexes formed between XO2 (X = S, Se, Te) and CH3YCH3 (Y = O, S, Se, Te) were systematically studied by using quantum chemical computations. The model complexes are stabilized via one primary X∙∙∙Y chalcogen bond (ChB) and the secondary C-H∙∙∙O hydrogen bonds. The binding energies of the studied complexes are in the range of -21.6~-60.4 kJ/mol. The X∙∙∙Y distances are significantly smaller than the sum of the van der Waals radii of the corresponding two atoms. The X∙∙∙Y ChBs in all the studied complexes except for the SO2∙∙∙CH3OCH3 complex are strong in strength and display a partial covalent character revealed by conducting the quantum theory of atoms in molecules (QTAIM), a non-covalent interaction plot (NCIplot), and natural bond orbital (NBO) analyses. The symmetry-adapted perturbation theory (SAPT) analysis discloses that the X∙∙∙Y ChBs are primarily dominated by the electrostatic component.


Asunto(s)
Calcógenos , Calcógenos/química , Enlace de Hidrógeno , Teoría Cuántica , Electricidad Estática
6.
Cell Mol Life Sci ; 80(10): 283, 2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37688662

RESUMEN

Dendritic cells (DCs) can mediate immune responses or immune tolerance depending on their immunophenotype and functional status. Remodeling of DCs' immune functions can develop proper therapeutic regimens for different immune-mediated diseases. In the immunopathology of autoimmune diseases (ADs), activated DCs notably promote effector T-cell polarization and exacerbate the disease. Recent evidence indicates that metformin can attenuate the clinical symptoms of ADs due to its anti-inflammatory properties. Whether and how the therapeutic effects of metformin on ADs are associated with DCs remain unknown. In this study, metformin was added to a culture system of LPS-induced DC maturation. The results revealed that metformin shifted DC into a tolerant phenotype, resulting in reduced surface expression of MHC-II, costimulatory molecules and CCR7, decreased levels of proinflammatory cytokines (TNF-α and IFN-γ), increased level of IL-10, upregulated immunomodulatory molecules (ICOSL and PD-L) and an enhanced capacity to promote regulatory T-cell (Treg) differentiation. Further results demonstrated that the anti-inflammatory effects of metformin in vivo were closely related to remodeling the immunophenotype of DCs. Mechanistically, metformin could mediate the metabolic reprogramming of DCs through FoxO3a signaling pathways, including disturbing the balance of fatty acid synthesis (FAS) and fatty acid oxidation (FAO), increasing glycolysis but inhibiting the tricarboxylic acid cycle (TAC) and pentose phosphate pathway (PPP), which resulted in the accumulation of fatty acids (FAs) and lactic acid, as well as low anabolism in DCs. Our findings indicated that metformin could induce tolerance in DCs by reprogramming their metabolic patterns and play anti-inflammatory roles in vitro and in vivo.


Asunto(s)
Enfermedades Autoinmunes , Metformina , Humanos , Metformina/farmacología , Metabolismo de los Lípidos , Ciclo del Ácido Cítrico , Ácidos Grasos , Células Dendríticas
7.
Comput Med Imaging Graph ; 109: 102301, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37738774

RESUMEN

Accurate segmentation of the renal cancer structure, including the kidney, renal tumors, veins, and arteries, has great clinical significance, which can assist clinicians in diagnosing and treating renal cancer. For accurate segmentation of the renal cancer structure in contrast-enhanced computed tomography (CT) images, we proposed a novel encoder-decoder structure segmentation network named MDM-U-Net comprising a multi-scale anisotropic convolution block, dual activation attention block, and multi-scale deep supervision mechanism. The multi-scale anisotropic convolution block was used to improve the feature extraction ability of the network, the dual activation attention block as a channel-wise mechanism was used to guide the network to exploit important information, and the multi-scale deep supervision mechanism was used to supervise the layers of the decoder part for improving segmentation performance. In this study, we developed a feasible and generalizable MDM-U-Net model for renal cancer structure segmentation, trained the model from the public KiPA22 dataset, and tested it on the KiPA22 dataset and an in-house dataset. For the KiPA22 dataset, our method ranked first in renal cancer structure segmentation, achieving state-of-the-art (SOTA) performance in terms of 6 of 12 evaluation metrics (3 metrics per structure). For the in-house dataset, our method achieves SOTA performance in terms of 9 of 12 evaluation metrics (3 metrics per structure), demonstrating its superiority and generalization ability over the compared networks in renal structure segmentation from contrast-enhanced CT scans.


Asunto(s)
Neoplasias Renales , Humanos , Neoplasias Renales/diagnóstico por imagen , Riñón , Arterias , Benchmarking , Relevancia Clínica , Procesamiento de Imagen Asistido por Computador
8.
Sci Rep ; 13(1): 12625, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537337

RESUMEN

Bladder cancer (BLCA) typically has a poor prognosis due to high rates of relapse and metastasis. Although the emergence of immunotherapy brings hope for patients with BLCA, not all patients will benefit from it. Identifying some markers to predict treatment response is particularly important. Here, we aimed to determine the clinical value of the ribonuclease/angiogenin inhibitor 1 (RNH1) in BLCA therapy based on functional status analysis. First, we found that RNH1 is aberrantly expressed in multiple cancers but is associated with prognosis in only a few types of cancer. Next, we determined that low RNH1 expression was significantly associated with enhanced invasion and metastasis of BLCA by assessing the relationship between RNH1 and 17 functional states. Moreover, we identified 95 hub genes associated with invasion and metastasis among RNH1-related genes. Enrichment analysis revealed that these hub genes were also significantly linked with immune activation. Consistently, BLCA can be divided into two molecular subtypes based on these hub genes, and the differentially expressed genes between the two subtypes are also significantly enriched in immune-related pathways. This indicates that the expression of RNH1 is also related to the tumour immune response. Subsequently, we confirmed that RNH1 shapes an inflammatory tumour microenvironment (TME), promotes activation of the immune response cycle steps, and has the potential to predict the immune checkpoint blockade (ICB) treatment response. Finally, we demonstrated that high RNH1 expression was significantly associated with multiple therapeutic signalling pathways and drug targets in BLCA. In conclusion, our study revealed that RNH1 could provide new insights into the invasion of BLCA and predict the immunotherapy response in patients with BLCA.


Asunto(s)
Estado Funcional , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia , Inmunoterapia , Vejiga Urinaria , Microambiente Tumoral/genética , Proteínas Portadoras
9.
Biosens Bioelectron ; 238: 115564, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37544105

RESUMEN

The identification and detection of mesenchymal circulating tumor cells (mCTCs) is important for early warning of tumor metastasis. The majority of conventional detection methods for CTCs rely on the recognition of epithelial biomarkers, which is technically challenging for detecting CTCs with epithelial-mesenchymal transition (EMT)-induced phenotypic alteration. In this work, we have constructed a label-free biosensor for sensitive electrochemical assay of mCTCs. In our design, the capture probe can recognize the vimentin overexpressed on the surface of mCTCs with high specificity. Meantime, the network-like DNA nanoprobes with multiple G-quadruplex/hemin complexes and multiple cholesterol molecules can be grafted to the cell surface based on the high affinity between cholesterol molecules and cell membrane. Owing to the mimic horseradish peroxidase of G-quadruplex/hemin complexes, strong electrochemical responses will be obtained for sensitive quantification of mCTCs with a detection limit of 8 cell mL-1. Moreover, the biosensor can effectively overcome the interference of vimentin negative cells or secretory vimentin, and realize the recovery tests in whole blood with high accuracy, thereby may further promoting the diagnosis and personalized treatment of cancer in clinic.


Asunto(s)
Técnicas Biosensibles , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Vimentina/metabolismo , Hemina , Biomarcadores de Tumor , ADN , Transición Epitelial-Mesenquimal/genética
10.
J Xray Sci Technol ; 31(3): 641-653, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37038803

RESUMEN

BACKGROUND: Ulna and radius segmentation of dual-energy X-ray absorptiometry (DXA) images is essential for measuring bone mineral density (BMD). OBJECTIVE: To develop and test a novel deep learning network architecture for robust and efficient ulna and radius segmentation on DXA images. METHODS: This study used two datasets including 360 cases. The first dataset included 300 cases that were randomly divided into five groups for five-fold cross-validation. The second dataset including 60 cases was used for independent testing. A deep learning network architecture with dual residual dilated convolution module and feature fusion block based on residual U-Net (DFR-U-Net) to enhance segmentation accuracy of ulna and radius regions on DXA images was developed. The Dice similarity coefficient (DSC), Jaccard, and Hausdorff distance (HD) were used to evaluate the segmentation performance. A one-tailed paired t-test was used to assert the statistical significance of our method and the other deep learning-based methods (P < 0.05 indicates a statistical significance). RESULTS: The results demonstrated our method achieved the promising segmentation performance, with DSC of 98.56±0.40% and 98.86±0.25%, Jaccard of 97.14±0.75% and 97.73±0.48%, and HD of 6.41±11.67 pixels and 8.23±7.82 pixels for segmentation of ulna and radius, respectively. According to statistics data analysis results, our method yielded significantly higher performance than other deep learning-based methods. CONCLUSIONS: The proposed DFR-U-Net achieved higher segmentation performance for ulna and radius on DXA images than the previous work and other deep learning approaches. This methodology has potential to be applied to ulna and radius segmentation to help doctors measure BMD more accurately in the future.


Asunto(s)
Absorciometría de Fotón , Radio (Anatomía) , Cúbito , Absorciometría de Fotón/métodos , Densidad Ósea , Procesamiento de Imagen Asistido por Computador/métodos , Radio (Anatomía)/diagnóstico por imagen , Cúbito/diagnóstico por imagen , Aprendizaje Profundo , Humanos
11.
Cancers (Basel) ; 15(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36900370

RESUMEN

Tumor hypoxia can seriously impede the effectiveness of photodynamic therapy (PDT). To address this issue, two approaches, termed in situ oxygen generation and oxygen delivery, were developed. The in situ oxygen generation method uses catalysts such as catalase to decompose excess H2O2 produced by tumors. It offers specificity for tumors, but its effectiveness is limited by the low H2O2 concentration often present in tumors. The oxygen delivery strategy relies on the high oxygen solubility of perfluorocarbon, etc., to transport oxygen. It is effective, but lacks tumor specificity. In an effort to integrate the merits of the two approaches, we designed a multifunctional nanoemulsion system named CCIPN and prepared it using a sonication-phase inversion composition-sonication method with orthogonal optimization. CCIPN included catalase, the methyl ester of 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO-Me), photosensitizer IR780, and perfluoropolyether. Perfluoropolyether may reserve the oxygen generated by catalase within the same nanoformulation for PDT. CCIPN contained spherical droplets below 100 nm and showed reasonable cytocompatibility. It presented a stronger ability to generate cytotoxic reactive oxygen species and consequently destroy tumor cells upon light irradiation, in comparison with its counterpart without catalase or perfluoropolyether. This study contributes to the design and preparation of oxygen-supplementing PDT nanomaterials.

12.
Gels ; 9(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36826287

RESUMEN

Dendritic cells (DCs), the most potent antigen-presenting cells, are necessary for the effective activation of naïve T cells. DCs encounter numerous microenvironments with different biophysical properties, such as stiffness and viscoelasticity. Considering the emerging importance of mechanical cues for DC function, it is essential to understand the impacts of these cues on DC function in a physiological or pathological context. Engineered hydrogels have gained interest for the exploration of the impacts of biophysical matrix cues on DC functions, owing to their extracellular-matrix-mimetic properties, such as high water content, a sponge-like pore structure, and tunable mechanical properties. In this review, the introduction of gelation mechanisms of hydrogels is first summarized. Then, recent advances in the substantial effects of developing hydrogels on DC function are highlighted, and the potential molecular mechanisms are subsequently discussed. Finally, persisting questions and future perspectives are presented.

13.
Biomaterials ; 294: 122014, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36709644

RESUMEN

Engineering hepatocytes as multicellular cell spheroids can improve their viability after implantation in vivo for effective rescue of the devastating acute liver failure (ALF). However, there is still a lack of straightforward methods for efficient generation of functional hepatocyte spheroids. In this study, a magnetic system, consisting of magnetic microwell arrays and magnet blocks, is developed to realize magnetically controlled 3D cell capture and spatial confinement-mediated cell aggregation. The cell spheroids with smaller size show superior hepatic functions than the larger-sized counterparts. Notably, the intrinsic magnetism of magnetic microwell arrays can regulate superoxide anions in hepatocyte spheroids and herein promote various biological processes, including antioxidation, hepatocyte-related functions, and pro-angiogenic potential. Ectopic implantation of the functional cell spheroids in ALF-challenged mice significantly prolongs the animal survival, ameliorates inflammation, and promotes liver regeneration. Hence, application of the magnetic system for generation of functionally enhanced hepatocyte spheroids holds great potential for clinical translation in the future.


Asunto(s)
Hepatocitos , Fallo Hepático Agudo , Ratones , Animales , Fallo Hepático Agudo/terapia , Esferoides Celulares , Fenómenos Físicos , Fenómenos Magnéticos
14.
J Cell Mol Med ; 27(3): 456-469, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36651490

RESUMEN

Among breast cancer patients, metastases are the leading cause of death. Despite decades of effort, little progress has been made to improve the treatment of breast cancer metastases, especially triple-negative breast cancer (TNBC). The extracellular matrix plays an important role in tumour growth and metastasis by causing its deposition, remodelling, and signalling. As we know, the process of fibrosis results in excessive amounts of extracellular matrix being deposited within the cells. So, it will be interesting to study if the use of anti-fibrotic drugs in combination with conventional chemotherapy drugs can produce synergistic antitumor effects. In this study, we assessed the efficacy of Pirfenidone (PFD), an FDA-approved medication for the treatment of idiopathic pulmonary fibrosis, on TNBC cells as well as its anti-tumour effects in xenograft tumour model. PFD inhibited in a dose-dependent manner breast cancer cell proliferation, migration, and invasion, while promoted their apoptosis in vitro. PFD also suppressed TGF-ß-induced activation of Smad signalling pathway and expression level of EMT-inducing transcription factors (e.g. SNAI2, TWIST1, ZEB1) as well as the mesenchymal genes such as VIMENTIN and N-Cadherin. On the contrary, the expression level of epithelial marker gene E-Cadherin was up-regulated in the presence of PFD. In vivo, PFD alone exerted a milder but significant anti-tumour effect than the chemotherapy drug nanoparticle albumin-bound paclitaxel (nab-PTX) did in the breast cancer xenograft mouse model. Interestingly, PFD synergistically boosted the cancer-killing effect of nab-PTX. Furthermore, Our data suggest that PFD suppressed breast cancer metastasis by inhibiting the activity of the TGFß/SMAD pathway.


Asunto(s)
Factor de Crecimiento Transformador beta , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Proteínas Smad/metabolismo
15.
Front Microbiol ; 13: 1008409, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386701

RESUMEN

Talaromyces amestolkiae is an important fungal species owing to its ubiquity in soils, plants, air, and food. In this study, we identified a novel six-segmented polymycovirus, Talaromyces amestolkiae polymycovirus 1 (TaPmV-1). Each of the double-stranded (ds) RNA segments of TaPmV-1 contained a single open reading frame, and the proteins encoded by dsRNA1, dsRNA2, dsRNA3, and dsRNA 5 shared significant amino acid identities of 56, 40, 47, and 43%, respectively, with the corresponding proteins of Aspergillus fumigatus polymycovirus-1(AfuPmV-1). DsRNA1, dsRNA3, and dsRNA5 of TaPmV-1 encoded an RNA-dependent RNA polymerase (RdRp), a viral methyltransferase, and a PAS-rich protein, respectively. The functions of the proteins encoded by dsRNA2, dsRNA4, and dsRNA6 have not been elucidated. Comparison of the virus-infected strain LSH3 with virus-cured strain LSHVF revealed that infection with TaPmV-l may reduce the production of red pigments and induce the clustering of fungal sclerotia. Furthermore, transcriptomic analyses demonstrated that infection with TaPmV-l downregulated the expression of transcripts related to metabolism, and may correlate with the reduced production of red pigments and clustering of sclerotia in T. amestolkiae. These results of this study provide novel insights into the mechanism of fungal gene regulation by polymycovirus infections at the transcriptome level, and this study is the first to report a novel polymycovirus of T. amestolkiae.

16.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166521, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35985448

RESUMEN

Nonsmall cell lung cancer (NSCLC) is among the most prevalent malignant tumours threatening human health. In the tumour microenvironment (TME), cancer-associated fibroblasts (CAFs) induce M2-polarized macrophages, which strongly regulate tumour progression. However, little is known about the association between CAFs and M2 macrophages. CD248 is a transmembrane glycoprotein found in several cancer cells, tumour stromal cells, and pericytes. Here, we isolated CAFs from tumour tissues of NSCLC patients to detect the relationship between CD248 expression and patient prognosis. We knocked down the expression of CD248 on CAFs to detect CXCL12 secretion and macrophage polarization. We then examined the effects of CD248-expressing CAF-induced M2 macrophage polarization to promote NSCLC progression in vitro and in vivo. We found that CD248 is expressed mainly in NSCLC-derived CAFs and that the expression of CD248 correlates with poor patient prognosis. Blocking CXCL12 receptor (CXCR4) drastically decreased M2 macrophage chemotaxis. CD248 promotes CAFs secreting CXCL12 to mediate M2-polarized macrophages to promote NSCLC progression both in vitro and in vivo. Collectively, our data suggest that CD248-positive CAFs induce NSCLC progression by mediating M2-polarized macrophages.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Fibroblastos Asociados al Cáncer/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Glicoproteínas/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Microambiente Tumoral
17.
J Ethnopharmacol ; 298: 115602, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36030030

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The fruit of Ginkgo biloba L. (Ginkgo nuts) has been used for a long time as a critical Chinese medicine material to treat cough and asthma, as well as a disinfectant. Similar records were written in the Compendium of Materia Medica (Ben Cao Gang Mu, pinyin in Chinese) and Sheng Nong's herbal classic (Shen Nong Ben Cao Jing, pinyin in Chinese). Recent research has shown that Ginkgo biloba exocarp extract (GBEE) has the functions of unblocking blood vessels and improving brain function, as well as antitumour activity and antibacterial activity. GBEE was shown to inhibit methicillin-resistant Staphylococcus aureus (MRSA) biofilm formation as a traditional Chinese herb in our previous report in this journal. AIM OF THE STUD: yThe antibiotic resistance of clinical bacteria has recently become increasingly serious. Thus, this study aimed to investigate the Ginkgo biloba exocarp extract (GBEE) antibacterial lineage, as well as its effect and mechanism on S. haemolyticus biofilms. This study will provide a new perspective on clinical multidrug resistant (MDR) treatment with ethnopharmacology herbs. METHODS: The microbroth dilution assay was carried out to measure the antibacterial effect of GBEE on 13 types of clinical bacteria. Bacterial growth curves with or without GBEE treatment were drawn at different time points. The potential targets of GBEE against S. haemolyticus were screened by transcriptome sequencing. The effects of GBEE on bacterial biofilm formation and mature biofilm disruption were determined by crystal violet staining and scanning electron microscopy. The metabolic activity of bacteria inside the biofilm was assessed by colony-forming unit (CFU) counting and (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2HY-tetrazolium bromide (MTT) assay. Quantitative polymerase chain reaction (qPCR) was used to measure the gene expression profile of GBEE on S. haemolyticus biofilm-related factors. RESULTS: The results showed that GBEE has bacteriostatic effects on 3 g-positive (G+) and 2 g-negative (G-) bacteria among 13 species of clinical bacteria. The antibacterial effect of GBEE supernatant liquid was stronger than the antibacterial effect of GBEE supernviaould-like liquid. GBEE supernatant liquid inhibited the growth of S. epidermidis, S. haemolyticus, and E. faecium at shallow concentrations with minimum inhibitory concentrations (MICs) of 2 µg/ml, 4 µg/ml and 8 µg/ml, respectively. Genes involved in quorum sensing, two-component systems, folate biosynthesis, and ATP-binding cassette (ABC) transporters were differentially expressed in GBEE-treated groups compared with controls. Crystal violet, scanning electron microscopy (SEM) and MTT assays showed that GBEE suppressed S. haemolyticus biofilm formation in a dose-dependent manner. Moreover, GBEE supernatant liquid downregulated cidA, cidB and atl, which are involved in cell lysis and extracellular DNA (eDNA) release, as well as downregulated the cbp, ebp and fbp participation in encoding cell-surface binding proteins. CONCLUSIONS: GBEE has an excellent antibacterial effect on gram-positive bacteria and also inhibits the growth of gram-negative bacteria, such as A. baumannii (carbapenem-resistant Acinetobacter baumannii) CRABA and S. maltophilia. GBEE inhibits the biofilm formation of S. haemolyticus by altering the regulation and biofilm material-related genes, including the release of eDNA and cell-surface binding proteins.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus haemolyticus , Antibacterianos/farmacología , Bacterias , Biopelículas , Violeta de Genciana/farmacología , Ginkgo biloba/química , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología
18.
Bioengineering (Basel) ; 9(8)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36004907

RESUMEN

Isoliquiritigenin (ILQ) has a number of biological activities such as antitumor and anti-inflammatory effects. However, biomedical applications of ILQ are impeded by its poor aqueous solubility. Therefore, in this research, we prepared a novel ILQ-loaded nanoemulsion, i.e., ILQ-NE, which consisted of Labrafil® M 1944 CS (oil), Cremophor® EL (surfactant), ILQ, and phosphate-buffered saline, by employing a combined sonication (high-energy) and phase-inversion composition (low-energy) method (denoted as the SPIC method). The ILQ-NE increased the ILQ solubility ~1000 times more than its intrinsic solubility. It contained spherical droplets with a mean diameter of 44.10 ± 0.28 nm and a narrow size distribution. The ILQ loading capacity was 4%. The droplet size of ILQ-NE remained unchanged during storage at 4 °C for 56 days. Nanoemulsion encapsulation effectively prevented ILQ from degradation under ultraviolet light irradiation, and enhanced the ILQ in vitro release rate. In addition, ILQ-NE showed higher cellular uptake and superior cytotoxicity to 4T1 cancer cells compared with free ILQ formulations. In conclusion, ILQ-NE may facilitate the biomedical application of ILQ, and the SPIC method presents an attractive avenue for bridging the merits and eliminating the shortcomings of traditional high-energy methods and low-energy methods.

19.
Medicine (Baltimore) ; 101(31): e29962, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35945793

RESUMEN

The tumor immune microenvironment is of crucial importance in cancer progression and anticancer immune responses. Thus, systematic exploration of the expression landscape and prognostic significance of immune-related genes (IRGs) to assist in the prognosis of colon cancer is valuable and significant. The transcriptomic data of 470 colon cancer patients were obtained from The Cancer Genome Atlas database and the differentially expressed genes were analyzed. After an intersection analysis, the hub IRGs were identified and a prognostic index was further developed using multivariable Cox analysis. In addition, the discriminatory ability and prognostic significance of the constructed model were validated and the characteristics of IRGs associated overall survival were analyzed to elucidate the underlying molecular mechanisms. A total of 465 differentially expressed IRGs and 130 survival-associated IRGs were screened. Then, 46 hub IRGs were identified by an intersection analysis. A regulatory network displayed that most of these genes were unfavorable for the prognosis of colon cancer and were regulated by transcription factors. After a least absolute shrinkage and selection operator regression analysis, 14 hub IRGs were ultimately chose to construct a prognostic index. The validation results illustrated that this model could act as an independent indicator to moderately separate colon cancer patients into low- and high-risk groups. This study ascertained the prognostic significance of IRGs in colon cancer and successfully constructed an IRG-based prognostic signature for clinical prediction. Our results provide promising insight for the exploration of diagnostic markers and immunotherapeutic targets in colon cancer.


Asunto(s)
Neoplasias del Colon , Biología Computacional , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico , RNA-Seq , Microambiente Tumoral/genética
20.
Front Cell Dev Biol ; 10: 879278, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846349

RESUMEN

Messenger RNA vaccines are considered to be a promising strategy in cancer immunotherapy, while their application on mesothelioma is still largely uncharacterized. This study aimed to identify potential antigens in mesothelioma for anti-mesothelioma mRNA vaccine development, and further determine the immune subtypes of mesothelioma for selection of suitable candidates from an extremely heterogeneous population. Gene expression data and corresponding clinicopathological information were obtained from the TCGA and gene expression omnibus, respectively. Then, the genetic alterations were compared and visualized using cBioPortal, and differentially expressed genes and their prognostic signatures were identified by GEPIA. The relationship between tumor-infiltrating immune cells and the expression of tumor antigens was systematically evaluated by TIMER online. Finally, the immune subtypes and immune landscape of mesothelioma were separately analyzed using consensus cluster and graph learning-based dimensional reduction. A total of five potential tumor antigens correlated with prognosis and infiltration of antigen-presenting cells, including AUNIP, FANCI, LASP1, PSMD8, and XPO5 were identified. Based on the expression of immune-related genes, patients with mesothelioma were divided into two immune subtypes (IS1 and IS2). Each subtype exhibited differential molecular, cellular and clinical properties. Patients with the IS1 subtype were characterized by an immune "cold" phenotype, displaying superior survival outcomes, whereas those with the IS2 subtype were characterized by an immune "hot" and immunosuppressive phenotype. Furthermore, immune checkpoints and immunogenic cell death modulators were differentially expressed between the IS1 and IS2 immune subtype tumors. The immunogenomic landscape of mesothelioma revealed a complex tumor immune microenvironment between individual patients. AUNIP, FANCI, LASP1, PSMD8, and XPO5 are putative antigens for the development of anti-mesothelioma mRNA vaccine and patients with the IS1 subtype may be considered for vaccination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...