Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
1.
Angew Chem Int Ed Engl ; : e202405209, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712643

RESUMEN

Regulating the electric double layer (EDL) structure of the zinc metal anode by using electrolyte additives is an efficient way to suppress interface side reactions and facilitate uniform zinc deposition. Nevertheless, there are no reports investigating the proactive design of EDL-regulating additives before the start of experiments. Herein, a functional group assembly strategy is proposed to design electrolyte additives for modulating the EDL, thereby realizing a long-lasting zinc metal anode. Specifically, by screening ten common functional groups, N, N-dimethyl-1H-imidazole-1-sulfonamide (IS) is designed by assembling an imidazole group, characterized by its high adsorption capability on the zinc anode, and a sulfone group, which exhibits strong binding with Zn2+ ions. Benefiting from the adsorption functionalization of the imidazole group, the IS molecules occupy the position of H2O in the inner Helmholtz layer of the EDL, forming a molecular protective layer to inhibit H2O-induced side reactions. Meanwhile, the sulfone group in IS, acting as a binding site to Zn2+, promotes the de-solvation of Zn2+ ions, facilitating compact zinc deposition. Consequently, the utilization of IS significantly extending the cycling stability of Zn||Zn and Zn||NaV3O8·1.5H2O full cell. This study offers an innovative approach to the design of EDL regulators for high-performance zinc metal batteries.

2.
Small ; : e2311770, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38794870

RESUMEN

Developing low-cost and highly efficient bifunctional catalysts for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) is a challenging problem in electrochemical overall water splitting. Here, iron, tungsten dual-doped nickel sulfide catalyst (Fe/W-Ni3S2) is synthesized on the nickel foam, and it exhibits excellent OER and HER performance. As a result, the water electrolyze based on Fe/W-Ni3S2 bifunctional catalyst illustrates 10 mA cm-2 at 1.69 V (without iR-compensation) and highly durable overall water splitting over 100 h tested under 500 mA cm-2. Experimental results and DFT calculations indicate that the synergistic interaction between Fe doping and Ni vacancy induced by W leaching during the in situ oxidation process can maximize exposed OER active sites on the reconstructed NiOOH species for accelerating OER kinetics, while the Fe/W dual-doping optimizes the electronic structure of Fe/W-Ni3S2 and the binding strength of intermediates for boosting HER. This study unlocks the different promoting mechanisms of incorporating Fe and W for boosting the OER and HER activity of Ni3S2 for water splitting, which provides significant guidance for designing high-performance bifunctional catalysts for overall water splitting.

4.
Nat Commun ; 15(1): 3325, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637537

RESUMEN

The effective flow of electrons through bulk electrodes is crucial for achieving high-performance batteries, although the poor conductivity of homocyclic sulfur molecules results in high barriers against the passage of electrons through electrode structures. This phenomenon causes incomplete reactions and the formation of metastable products. To enhance the performance of the electrode, it is important to place substitutable electrification units to accelerate the cleavage of sulfur molecules and increase the selectivity of stable products during charging and discharging. Herein, we develop a single-atom-charging strategy to address the electron transport issues in bulk sulfur electrodes. The establishment of the synergistic interaction between the adsorption model and electronic transfer helps us achieve a high level of selectivity towards the desirable short-chain sodium polysulfides during the practical battery test. These finding indicates that the atomic manganese sites have an enhanced ability to capture and donate electrons. Additionally, the charge transfer process facilitates the rearrangement of sodium ions, thereby accelerating the kinetics of the sodium ions through the electrostatic force. These combined effects improve pathway selectivity and conversion to stable products during the redox process, leading to superior electrochemical performance for room temperature sodium-sulfur batteries.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38676569

RESUMEN

OBJECTIVES: This study aims to investigate the relationship between serum calcium (SC) levels and the incidence of postoperative atrial fibrillation (POAF) in patients undergoing coronary artery bypass graft surgery. METHODS: This retrospective, observational cohort study consecutively enrolled patients undergoing isolated coronary artery bypass grafting in Beijing Anzhen Hospital from January 2018 to December 2021. Patients with a previous history of atrial fibrillation or atrial flutter or requiring concomitant cardiac surgery were excluded. A logistic regression model was used to determine predictors of POAF. Multivariable adjustment, inverse probability of treatment weighting and propensity score matching were used to adjust for confounders. Moreover, we conducted univariable and multivariable logistic regression analyses on preoperative and postoperative SC and ionized SC levels. RESULTS: The analysis encompassed 12 293 patients. The POAF rate was significantly higher in patients with low SC level than those without (1379 [33.9%] vs 2375 [28.9%], P < 0.001). Low SC level was associated with an increased odds ratio of POAF (odds ratio [95% confidence interval]: 1.27 [1.18-1.37], P < 0.001). Inverse probability of treatment weighting and propensity score matching analyses confirmed the results. The increased POAF rate in low SC level group still existed among subgroup analysis based on different age, sex, body mass index, hypertension, hyperlipidaemia, CHA2DS2-VASc and magnesium. CONCLUSIONS: Low SC level indicates elevated POAF risk in patients undergoing isolated coronary artery bypass graft surgery even after the adjustment for age, sex, cardiovascular risk factors, echocardiographic parameters and laboratory markers.

6.
Chem Soc Rev ; 53(8): 4230-4301, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38477330

RESUMEN

Sodium-ion batteries (SIBs) are experiencing a large-scale renaissance to supplement or replace expensive lithium-ion batteries (LIBs) and low energy density lead-acid batteries in electrical energy storage systems and other applications. In this case, layered oxide materials have become one of the most popular cathode candidates for SIBs because of their low cost and comparatively facile synthesis method. However, the intrinsic shortcomings of layered oxide cathodes, which severely limit their commercialization process, urgently need to be addressed. In this review, inherent challenges associated with layered oxide cathodes for SIBs, such as their irreversible multiphase transition, poor air stability, and low energy density, are systematically summarized and discussed, together with strategies to overcome these dilemmas through bulk phase modulation, surface/interface modification, functional structure manipulation, and cationic and anionic redox optimization. Emphasis is placed on investigating variations in the chemical composition and structural configuration of layered oxide cathodes and how they affect the electrochemical behavior of the cathodes to illustrate how these issues can be addressed. The summary of failure mechanisms and corresponding modification strategies of layered oxide cathodes presented herein provides a valuable reference for scientific and practical issues related to the development of SIBs.

7.
Adv Mater ; : e2402337, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38458611

RESUMEN

Room-temperature sodium-sulfur (RT-Na/S) batteries are promising alternatives for next-generation energy storage systems with high energy density and high power density. However, some notorious issues are hampering the practical application of RT-Na/S batteries. Besides, the working mechanism of RT-Na/S batteries under practical conditions such as high sulfur loading, lean electrolyte, and low capacity ratio between the negative and positive electrode (N/P ratio), is of essential importance for practical applications, yet the significance of these parameters has long been disregarded. Herein, it is comprehensively reviewed recent advances on Na metal anode, S cathode, electrolyte, and separator engineering for RT-Na/S batteries. The discrepancies between laboratory research and practical conditions are elaborately discussed, endeavors toward practical applications are highlighted, and suggestions for the practical values of the crucial parameters are rationally proposed. Furthermore, an empirical equation to estimate the actual energy density of RT-Na/S pouch cells under practical conditions is rationally proposed for the first time, making it possible to evaluate the gravimetric energy density of the cells under practical conditions. This review aims to reemphasize the vital importance of the crucial parameters for RT-Na/S batteries to bridge the gaps between laboratory research and practical applications.

8.
Adv Mater ; 36(21): e2312207, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38329004

RESUMEN

Linearly interlinked single atoms offer unprecedented physiochemical properties, but their synthesis for practical applications still poses significant challenges. Herein, linearly interlinked iron single-atom catalysts that are loaded onto interconnected carbon channels as cathodic sulfur hosts for room-temperature sodium-sulfur batteries are presented. The interlinked iron single-atom exhibits unique metallic iron bonds that facilitate the transfer of electrons to the sulfur cathode, thereby accelerating the reaction kinetics. Additionally, the columnated and interlinked carbon channels ensure rapid Na+ diffusion kinetics to support high-rate battery reactions. By combining the iron atomic chains and the topological carbon channels, the resulting sulfur cathodes demonstrate effective high-rate conversion performance while maintaining excellent stability. Remarkably, even after 5000 cycles at a current density of 10 A g-1, the Na-S battery retains a capacity of 325 mAh g-1. This work can open a new avenue in the design of catalysts and carbon ionic channels, paving the way to achieve sustainable and high-performance energy devices.

9.
ACS Nano ; 18(9): 7287-7297, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38373205

RESUMEN

Prussian blue analogues (PBAs) have been widely studied as cathodes for potassium-ion batteries (PIBs) due to their three-dimensional framework structure and easily adjustable composition. However, the phase transition behavior and [Fe(CN)6]4- anionic defects severely deteriorate electrochemical performances. Herein, we propose a defect-free potassium iron manganese hexacyanoferrate (K1.47Fe0.5Mn0.5[Fe(CN)6]·1.26H2O, KFMHCF-1/2) as the cathode material for PIBs. The Fe-Mn binary synergistic and defect-free effects can inhibit the cell volume change and octahedral slip during the K-ion insertion/extraction process, so that the phase transformation behavior (monoclinic ↔ cubic) is effectively inhibited, achieving a zero-strain solid solution mechanism employing Fe and Mn as dual active-sites. Thus, KFMHCF-1/2 contributes the highest initial capacity of 155.3 mAh·g-1 with an energy density of 599.5 Wh·kg-1 at 10 mA·g-1 among the reported PBA cathodes, superior rate capability, and cyclic stability over 450 cycles. The assembled K-ion full battery using K deposited on graphite (K@G) as anode also delivers high reversible specific capacity of 131.1 mAh·g-1 at 20 mA·g-1 and ultralong lifespans over 1000 cycles at 50 mA·g-1 with the lowest capacity decay rate of 0.044% per cycle. This work will promote the rapid application of high-energy-density PIBs.

10.
Nanomicro Lett ; 16(1): 78, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38190094

RESUMEN

The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth. Resolving this issue will be key to achieving high-performance lithium metal batteries (LMBs). Herein, we construct a lithium nitrate (LiNO3)-implanted electroactive ß phase polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) crystalline polymorph layer (PHL). The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels. These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes, decreasing the growth of lithium dendrites. The stretched molecular channels can also accelerate the transport of Li ions. The combined effects enable a high Coulombic efficiency of 97.0% for 250 cycles in lithium (Li)||copper (Cu) cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm-2 with ultrahigh Li utilization of 50%. Furthermore, the full cell coupled with PHL-Cu@Li anode and LiFePO4 cathode exhibits long-term cycle stability with high-capacity retention of 95.9% after 900 cycles. Impressively, the full cell paired with LiNi0.87Co0.1Mn0.03O2 maintains a discharge capacity of 170.0 mAh g-1 with a capacity retention of 84.3% after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83. This facile strategy will widen the potential application of LiNO3 in ester-based electrolyte for practical high-voltage LMBs.

11.
ACS Appl Mater Interfaces ; 16(1): 1596-1604, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38153381

RESUMEN

Jumping, a fundamental survival behavior observed in organisms, serves as a vital mechanism for adapting to the surrounding environment and overcoming significant obstacles within a given terrain. Here, we present a light-controlled soft jumping actuator inspired by asphondylia, which employs a closed-loop structure and utilizes a liquid crystal elastomer (LCE). Photo-mechanical coupling highlights the significant influence of the light source on the actuator's jumping behavior. Manipulating the light intensity, the relative position of stimulus and light lock, and the concentration of disperse red 1 (DR1) allows precise control over both the maximum take-off velocity and jump height. Furthermore, tailoring the size of the LCE actuator offers a means of regulating jumping behavior. Upon exposure to 460 nm LED irradiation, our actuator achieves remarkable performance, with a maximum jumping height of 10 body length (BL) and take-off velocity of 62 BL/s. These actuators accumulate and rapidly release energy, enabling the effective transportation of microcargos across substantial distances. Our research yields valuable insights into the realm of soft robotics, underscoring the pivotal importance of photo-mechanical coupling in the field of soft robotics, thereby serving as a catalyst for inspiring continued exploration of agile and capable systems by prestoring elastic energy.

12.
ACS Nano ; 18(1): 28-66, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38117556

RESUMEN

Covalent organic frameworks (COFs) have attracted considerable interest in the field of rechargeable batteries owing to their three-dimensional (3D) varied pore sizes, inerratic porous structures, abundant redox-active sites, and customizable structure-adjustable frameworks. In the context of metal-ion batteries, these materials play a vital role in electrode materials, effectively addressing critical issues such as low ionic conductivity, limited specific capacity, and unstable structural integrity. However, the electrochemical characteristics of the developed COFs still fall short of practical battery requirements due to inherent issues such as low electronic conductivity, the tradeoff between capacity and redox potential, and unfavorable micromorphology. This review provides a comprehensive overview of the recent advancements in the application of COFs, COF-based composites, and their derivatives in rechargeable metal-ion batteries, including lithium-ion, lithium-sulfur, sodium-ion, sodium-sulfur, potassium-ion, zinc-ion, and other multivalent metal-ion batteries. The operational mechanisms of COFs, COF-based composites, and their derivatives in rechargeable batteries are elucidated, along with the strategies implemented to enhance the electrochemical properties and broaden the range of their applications.

13.
JTCVS Tech ; 22: 28-38, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38152208

RESUMEN

Objective: Severe mitral annular calcification (MAC) can make prosthetic implantation extremely difficult. Although intra-atrial mitral valve prosthesis implantation without annular decalcification offers a simpler approach, it poses a potential rupture risk due to high left ventricular pressure. We developed a double-layer (DL) horizontal cross-suture technique, which ensures close proximity of the valve prosthesis to the calcified annulus and segregates the left atrial wall from the left ventricle. The aim of this study was to compare the outcomes of DL suture with conventional single-layer (SL) suture in patients with severe MAC. Methods: This retrospective cohort study consecutively enrolled patients with severe MAC undergoing mitral valve replacement at Beijing Anzhen Hospital from May 2018 to December 2022. A detailed description of the DL suture method is described. Follow-up medical evaluations, including transthoracic echocardiography measurements, were obtained through outpatient chart reviews. Results: The study included 10 patients in the DL suture group and 20 in the SL suture group. All patients in the DL group and all but 3 in the SL group achieved technical success. Compared with the SL group, the DL suture technique was associated with lower rates of perivalvular leakage, stroke, new-onset atrial fibrillation, reoperation, and 30-day mortality. Follow-up was complete, with 1 late mortality in the DL group due to stroke and 4 cardiovascular deaths in the SL group. Conclusions: The DL horizontal cross-suture technique offers a more effective and safer approach for intra-atrial mitral valve implantation in severe MAC cases than the conventional SL suture method.

14.
Europace ; 25(11)2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37939825

RESUMEN

AIMS: Dapagliflozin has been widely used for the treatment of type 2 diabetes mellitus (T2DM) and heart failure (HF). However, data concerning the association between dapagliflozin and the recurrence of atrial fibrillation (AF), especially in patients following Cox-Maze IV (CMIV), are rare. We aim to explore the effect of dapagliflozin on the recurrence of AF after CMIV with and without T2DM or HF. METHODS AND RESULTS: The study of dapagliflozin evaluation in AF patients followed by CMIV (DETAIL-CMIV) is a prospective, double-blind, randomized, placebo-controlled trial. A total of 240 AF patients who have received the CMIV procedure will be randomized into the dapagliflozin group (10 mg/day, n = 120) and the placebo group (10 mg/day, n = 120) and treated for 3 months. The primary endpoint is any documented atrial tachyarrhythmia (AF, atrial flutter or atrial tachycardia) lasting 30 s following a blanking period of 3 months after CMIV. CONCLUSION: DETAIL-CMIV will determine whether the sodium-glucose cotransporter-2 inhibitor dapagliflozin, added to guideline-recommended post-operative AF therapies, safely reduces the recurrence rate of AF in patients with and without T2DM or HF.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/cirugía , Estudios Prospectivos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Ablación por Catéter/métodos , Insuficiencia Cardíaca/cirugía , Resultado del Tratamiento
15.
ACS Nano ; 17(22): 23065-23078, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37948160

RESUMEN

One effective solution to inhibit side reactions and Zn dendrite growth in aqueous Zn-ion batteries is to add a cosolvent into the Zn(CF3SO3)2 electrolyte, which has the potential to form a robust solid electrolyte interface composed of ZnF2 and ZnS. Nevertheless, there is still a lack of discussion on a convenient selection method for cosolvents, which can directly reflect the interactions between solvent and solute to rationally design the electrolyte solvation structure. Herein, logP, where P is the octanol-water partition coefficient, a general parameter to describe the hydrophilicity and lipophilicity of chemicals, is proposed as a standard for selecting cosolvents for Zn(CF3SO3)2 electrolyte, which is demonstrated by testing seven different types of solvents. The solvent with a logP value similar to that of the salt anion CF3SO3- can interact with CF3SO3-, Zn2+, and H2O, leading to a reconstruction of the electrolyte solvation structure. To prove the concept, methyl acetate (MA) is demonstrated as an example due to its similar logP value to that of CF3SO3-. Both the experimental and theoretical results illustrate that MA molecules not only enter into the solvation shell of CF3SO3- but also coordinate with Zn2+ or H2O, forming an MA and CF3SO3- involved core-shell solvation structure. The special solvation structure reduces H2O activity and contributes to forming an anion-induced ZnCO3-ZnF2-rich solid electrolyte interface. As a result, the Zn||Zn cell and Zn||NaV3O8·1.5H2O cell with MA-involved electrolyte exhibit superior performances to that with the MA-free electrolyte. This work provides an insight into electrolyte design via salt anion chemistry for high-performance Zn batteries.

16.
Environ Sci Technol ; 57(30): 10911-10918, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37440474

RESUMEN

Microplastics have been detected in human stool, lungs, and placentas, which have direct exposure to the external environment through various body cavities, including the oral/anal cavity and uterine/vaginal cavity. Crucial data on microplastic exposure in completely enclosed human organs are still lacking. Herein, we used a laser direct infrared chemical imaging system and scanning electron microscopy to investigate whether microplastics exist in the human heart and its surrounding tissues. Microplastic specimens were collected from 15 cardiac surgery patients, including 6 pericardia, 6 epicardial adipose tissues, 11 pericardial adipose tissues, 3 myocardia, 5 left atrial appendages, and 7 pairs of pre- and postoperative venous blood samples. Microplastics were not universally present in all tissue samples, but nine types were found across five types of tissue with the largest measuring 469 µm in diameter. Nine types of microplastics were also detected in pre- and postoperative blood samples with a maximum diameter of 184 µm, and the type and diameter distribution of microplastics in the blood showed alterations following the surgical procedure. Moreover, the presence of poly(methyl methacrylate) in the left atrial appendage, epicardial adipose tissue, and pericardial adipose tissue cannot be attributed to accidental exposure during surgery, providing direct evidence of microplastics in patients undergoing cardiac surgery. Further research is needed to examine the impact of surgery on microplastic introduction and the potential effects of microplastics in internal organs on human health.

17.
ACS Nano ; 17(12): 11220-11252, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37289640

RESUMEN

Rechargeable sodium-ion batteries (SIBs) have been considered as promising energy storage devices owing to the similar "rocking chair" working mechanism as lithium-ion batteries and abundant and low-cost sodium resource. However, the large ionic radius of the Na-ion (1.07 Å) brings a key scientific challenge, restricting the development of electrode materials for SIBs, and the infeasibility of graphite and silicon in reversible Na-ion storage further promotes the investigation of advanced anode materials. Currently, the key issues facing anode materials include sluggish electrochemical kinetics and a large volume expansion. Despite these challenges, substantial conceptual and experimental progress has been made in the past. Herein, we present a brief review of the recent development of intercalation, conversion, alloying, conversion-alloying, and organic anode materials for SIBs. Starting from the historical research progress of anode electrodes, the detailed Na-ion storage mechanism is analyzed. Various optimization strategies to improve the electrochemical properties of anodes are summarized, including phase state adjustment, defect introduction, molecular engineering, nanostructure design, composite construction, heterostructure synthesis, and heteroatom doping. Furthermore, the associated merits and drawbacks of each class of material are outlined, and the challenges and possible future directions for high-performance anode materials are discussed.

18.
Small Methods ; : e2300268, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37317019

RESUMEN

Aqueous Zn-metal batteries (AZMBs) have gained great interest due to their low cost, eco-friendliness, and inherent safety, which serve as a promising complement to the existing metal-based batteries, e.g., lithium-metal batteries and sodium-metal batteries. Although the utilization of aqueous electrolytes and Zn metal anode in AZMBs ensures their improved safety over other metal batteries meanwhile guaranteeing their decent energy density at the cell level, plenty of challenges involved with metallic Zn anode still await to be addressed, including dendrite growth, hydrogen evolution reaction, and zinc corrosion and passivation. In the past years, several attempts have been adopted to address these problems, among which engineering the aqueous electrolytes and additives is regarded as a facile and promising approach. In this review, a comprehensive summary of aqueous electrolytes and electrolyte additives will be given based on the recent literature, aiming at providing a fundamental understanding of the challenges associated with the metallic Zn anode in aqueous electrolytes, meanwhile offering a guideline for the electrolytes and additives engineering strategies toward stable AZMBs in the future.

19.
Nano Lett ; 23(13): 6050-6058, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37367972

RESUMEN

Aqueous zinc (Zn) batteries have been regarded as an alternative to lithium-ion batteries due to their high abundance, low cost, and higher intrinsic safety. However, the low Zn plating/stripping reversibility, Zn dendrite growth, and continuous water consumption have hindered the practical application of aqueous Zn anodes. Herein, a hydrous organic Zn-ion electrolyte based on a dual organic solvent, namely hydrated Zn(BF4)2 zinc salt dissolved in dimethyl carbonate (DMC) and vinyl carbonate (EC) solvents [denoted as Zn(BF4)2/DMC/EC], can address these problems, which not only inhibits the side reactions but also promotes uniform Zn plating/stripping through the formation of a stable solid state interface layer and Zn2+-EC/2DMC pairs. This electrolyte enables the Zn electrode to stably undergo >700 cycles at a rate of 1 mA cm-2 with a Coulombic efficiency of 99.71%. Moreover, the full cell paired with V2O5 also demonstrates excellent cycling stability without capacity decay at 1 A g-1 after 1600 cycles.

20.
Biochem Biophys Res Commun ; 665: 124-132, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37156050

RESUMEN

Fibrillin 1 (Fbn1) mutations cause Marfan syndrome (MFS), with aortic root dilatation, dissection, and rupture. Few studies reported the blood calcium and lipid profile of MFS, and the effect of vascular smooth muscle cell (VSMC) phenotypic switching on MFS aortic aneurysm is unclear. Here, we aimed to investigate the role of calcium-related VSMC phenotypic switching in MFS. We retrospectively collected MFS patients' clinical data, performed bioinformatics analysis to screen the enriched biological process in MFS patients and mice, and detected markers of VSMC phenotypic switching on Fbn1C1039G/+ mice and primary aortic vascular smooth muscle cells. We found that patients with MFS have elevated blood calcium levels and dyslipidemia. Furthermore, the calcium concentration levels were increased with age in MFS mice, accompanied by the promoted VSMC phenotypic switching, and SERCA2 contributed to maintaining the contractile phenotype of VSMCs. This study provides the first evidence that the increased calcium is associated with the promoted VSMC phenotype switching in MFS. SERCA may become a novel therapeutic target for suppressing aneurysm progression in MFS.


Asunto(s)
Síndrome de Marfan , Músculo Liso Vascular , Ratones , Animales , Calcio , Síndrome de Marfan/genética , Síndrome de Marfan/complicaciones , Estudios Retrospectivos , Fenotipo , Miocitos del Músculo Liso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...