Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 13(18): 5196-5204, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35655547

RESUMEN

Selective oxidative cleavage of the C(CO)-C bond in ketones to access esters is a highly attractive strategy for upgrading ketones. However, it remains a great challenge to realize this important transformation over heterogeneous metal-free catalysts. Herein, we designed a series of porous and ultrathin N-doped carbon nanosheets (denoted as CN-X, where X represents the pyrolysis temperature) as heterogeneous metal-free catalysts. It was observed that the fabricated CN-800 could efficiently catalyze the oxidative cleavage of the C(CO)-C bond in various ketones to generate the corresponding methyl esters at 130 °C without using any additional base. Detailed investigations revealed that the higher content and electron density of the graphitic-N species contributed to the excellent performance of CN-800. Besides, the high surface area, affording active sites that are more easily accessed, could also enhance the catalytic activity. Notably, the catalysts have great potential for practical applications because of some obvious advantages, such as low cost, neutral reaction conditions, heterogeneous nature, high efficiency, and broad ketone scope. To the best of our knowledge, this is the first work on efficient synthesis of methyl esters via oxidative esterification of ketones over heterogeneous metal-free catalysts.

2.
Angew Chem Int Ed Engl ; 60(39): 21479-21485, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34318968

RESUMEN

Oxidative cyanation of aldehydes provides a promising strategy for the cyanide-free synthesis of organic nitriles. Design of robust and cost-effective catalysts is the key for this route. Herein, we designed a series of Se,S,N-tri-doped carbon nanosheets with a hierarchical porous structure (denoted as Se,S,N-CNs-x, x represents the pyrolysis temperature). It was found that the obtained Se,S,N-CNs-1000 was very selective and efficient for oxidative cyanation of various aldehydes including those containing other oxidizable groups into the corresponding nitriles using ammonia as the nitrogen resource below 100 °C. Detailed investigations revealed that the excellent performance of Se,S,N-CNs-1000 originated mainly from the graphitic-N species with lower electron density and synergistic effect between the Se, S, N, and C in the catalyst. Besides, the hierarchically porous structure could also promote the reaction. Notably, the unique feature of this metal-free catalyst is that it tolerated other oxidizable groups, and showed no activity on further reaction of the products, thereby resulting in high selectivity. As far as we know, this is the first work for the synthesis of nitriles via oxidative cyanation of aldehydes over heterogeneous metal-free catalysts.

3.
Chem Sci ; 12(18): 6342-6349, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34084432

RESUMEN

Selective oxidation of biomass-derived furan compounds to maleic acid (MA), an important bulk chemical, is a very attractive strategy for biomass transformation. However, achieving a high MA selectivity remains a great challenge. Herein, we for the first time successfully designed and fabricated Se-doped graphitic carbon nitride nanotubes with a chemical formula of C3.0N-Se0.03. The prepared C3.0N-Se0.03 was highly efficient for electrocatalytic oxidation of various biomass-derived furan compounds to generate MA. At ambient conditions, the MA yield could reach 84.2% from the electro-oxidation of furfural. Notably, the substituents on the furan ring significantly affected the selectivity to MA, following the order: carboxyl group > aldehyde group > hydroxyl group. Detailed investigation revealed that Se doping could tune the chemical structure of the materials (e.g., C3.0N-Se0.03 and g-C3N4), thus resulting in the change in catalytic mechanism. The excellent performance of C3.0N-Se0.03 originated from the suitable amount of graphitic N and its better electrochemical properties, which significantly boosted the oxidation pathway to MA. This work provides a robust and selective metal-free electrocatalyst for the sustainable synthesis of MA from oxidation of biomass-derived furan compounds.

4.
J Am Chem Soc ; 142(31): 13606-13613, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32658474

RESUMEN

The electrochemical synthesis of chemicals from carbon dioxide, which is an easily available and renewable carbon resource, is of great importance. However, to achieve high product selectivity for desirable C2 products like ethylene is a big challenge. Here we design Cu nanosheets with nanoscaled defects (2-14 nm) for the electrochemical production of ethylene from carbon dioxide. A high ethylene Faradaic efficiency of 83.2% is achieved. It is proved that the nanoscaled defects can enrich the reaction intermediates and hydroxyl ions on the electrocatalyst, thus promoting C-C coupling for ethylene formation.

5.
ChemSusChem ; 13(23): 6346-6352, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-32166869

RESUMEN

CO2 electroreduction has gained significant interest. However, fabricating cost-effective nonprecious-metal electrocatalysts that can selectively convert CO2 to a specific product remains highly challenging. Herein, Pb-based materials consisting of Pb0 and PbO confined in ordered mesoporous carbon (OMC) (Pb/PbO@OMC) were constructed for CO2 electroreduction to CO. Interestingly, the activity and selectivity of the Pb/PbO@OMC varied with the molar ratio of Pb0 /PbO. The material calcined at 800 °C (Pb/PbO@OMC-800) with a Pb0 /PbO ratio of 0.58 provided the best result with CO as the only carbon-based product, and the Faradaic efficiency of CO reached 98.3 % at a high current density of 41.3 mA cm-2 . Detailed studies indicated that Pb0 , PbO, and OMC co-operated well to enhance the performance of Pb/PbO@OMC-800, which mainly originated from the good interface between Pb0 and PbO, higher electrochemical active surface area, and faster electron transfer to form the CO2 ⋅- intermediate.

6.
Chem Sci ; 10(17): 4692-4698, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31123580

RESUMEN

Development of efficient strategies for biomass valorization is a highly attractive topic. Herein, we conducted the first work on electrocatalytic oxidation of renewable furfural to produce the key bioactive intermediate 5-hydroxy-2(5H)-furanone (HFO). It was demonstrated that using H2O as the oxygen source and metal chalcogenides (CuS, ZnS, PbS, etc.) as electrocatalysts, the reaction could proceed efficiently, and the CuS nanosheets prepared in this work showed the best performance and provided high HFO selectivity (83.6%) and high conversion (70.2%) of furfural. In addition, the CuS electrocatalyst showed long-term stability. Mechanism investigation showed that furfural was oxidized to HFO via multistep reactions, including C-C cleavage, subsequent ring opening and oxidation, and intramolecular isomerization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...