Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 18: 1823-1834, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37041817

RESUMEN

Purpose: Nanotechnology-based drug delivery systems (nano-DDS) have been developed to be a promising strategy to improve the efficacy, safety, physicochemical and pharmacokinetic/pharmacodynamics properties of drugs. It is very necessary to elucidate the delivery process in vivo or in cells for the rational design and accurate preparation of nano-DDS. The aim of this study was to construct a nano-DDS to visualize and quantify the intracellular behavior of the loaded cargo and carrier in such a system. Methods: A carboxyl-terminal end of poly(lactic-co-glycolic acid) polymer was fluorescently labeled with rhodamine B by conjugation of ethylenediamine. Dual-fluorescent nanoparticles (DFPs) were prepared from this fluorescently labeled polymer to encapsulate a fluorescent cargo, coumarin 6. The carrier and cargo of DFPs were monitored by confocal fluorescence microscopy during cellular uptake. Furthermore, the transcellular transportation of DFPs was evaluated quantitatively by measuring the fluorescence intensity. Results: The obtained fluorescent polymer showed stable and quantifiable characteristics. DFPs could be customized in terms of coumarin 6 content (97.7±1.0%), size (367.3±1.7 nm) and dual-emission fluorescence (green cargo and red carrier). DFPs did not significantly affect cell viability, the integrity of cell monolayers and the microscopic morphology at concentrations below 0.7 mg/mL within 3 h of co-incubation with Caco-2 cells. Multichannel fluorescence monitoring revealed that the fluorescence intensity of the carrier and cargo increased with time, but not synchronously. By calculating the residual, intracellular, and transport amounts of DFPs, the material balance between the total amount of cellular transport and the dose administered was obtained. Conclusion: Based on the advantages of dual fluorescent labeling, the differential behavior of cell trafficking can be visualized and quantitatively analyzed for the cargo and carrier of DFPs. These results provide insights into the cellular transport process of holistic nanoparticles and complement our understanding of the biological behaviors of nano-DDS.


Asunto(s)
Nanopartículas , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Células CACO-2 , Nanopartículas/química , Polímeros/química , Colorantes Fluorescentes/química
2.
Chin Herb Med ; 15(1): 117-122, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36875442

RESUMEN

Objective: The intestinal absorption characteristics of active ingredients are very important for oral administration of traditional Chinese medicine (TCM) to achieve the desired therapeutic effect. However, a deeper understanding about active ingredients absorption characteristics is still lack. The aim of this study was to investigate the absorption properties and mechanism of rhubarb active ingredients in TCM preparation and pure form. Methods: The intestinal absorption behavior of active ingredients in Shenkang extract (SKE) and rhubarb anthraquinone ingredients (RAI) were investigated by in situ single-pass intestinal perfusion model. And the bidirectional transport characteristics of these active ingredients were assessed by in vitro Caco-2 cell monolayer model. Results: In situ experiment on Sprague-Dawley rats, the effective permeability coefficient values of aloe-emodin, emodin and chrysophanol in RAI were higher than those in SKE, and the value of rhein in RAI was lower than that in SKE. But the easily absorbed segments of intestine were consistent for all ingredients, whether in SKE or in RAI. In vitro experiment, the apparent permeability coefficient values of rhein, emodin and chrysophanol in RAI were higher than those in SKE, and this value of aloe-emodin in RAI was lower than that in SKE. But their efflux ratio (ER) values in SKE and RAI were all similar. Conclusion: Four rhubarb anthraquinone ingredients in SKE and RAI have similar absorption mechanism and different absorption behavior, and the microenvironment of the study models influenced their absorption behavior. The results may provide an aid for understanding of the absorption characteristics of the TCM active ingredients in complex environments and the complementarities of different research models.

3.
Biomedicines ; 10(10)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36289715

RESUMEN

Glioma is an invasive brain cancer, and it is difficult to achieve desired therapeutic effects due to the high postoperative recurrence rate and limited efficacy of drug therapy hindered by the biological barrier of brain tissue. Nanodrug delivery systems are of great interest, and many efforts have been made to utilize them for glioma treatment. Polyamidoamine (PAMAM), a starburst dendrimer, provides malleable molecular size, functionalized molecular structure and penetrable brain barrier characteristics. Therefore, PAMAM-based nanodrug delivery systems (PAMAM DDS) are preferred for glioma treatment research. In this review, experimental studies on PAMAM DDS for glioma therapy were focused on and summarized. Emphasis was given to three major topics: methods of drug loading, linkers between drug/ligand and PAMAM and ligands of modified PAMAM. A strategy for well-designed PAMAM DDS for glioma treatment was proposed. Purposefully understanding the physicochemical and structural characteristics of drugs is necessary for selecting drug loading methods and achieving high drug loading capacity. Additionally, functional ligands contribute to achieving the brain targeting, brain penetration and low toxicity of PAMAM DDS. Furthermore, a brilliant linker facilitates multidrug combination and multifunctional PAMAM DDS. PAMAM DDS show excellent promise as drug vehicles and will be further studied for product development and safety evaluation.

4.
Drug Dev Res ; 82(8): 1124-1130, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33847382

RESUMEN

Coronavirus Disease 2019 (COVID-19) cases and deaths are still rising worldwide, there is currently no effective treatment for severe inflammation and acute lung injury caused by new coronavirus (SARS-COV-2) infection. Therapies to prevent or treat COVID-19, including antiviral drug and several vaccines, are still being development. Human angiotensin-converting enzyme 2 (ACE2), expressing in lung, has been confirmed to be a receptor for SARS-COV-2 infection, interventions for attachment of spike protein of SARS-CoV-2 to ACE2 may be a potential approach to prevent viral infections and it is considered as a potential target for drug development. In this study, we observed that seabuckthorn and its flavonoid compounds quercetin and isorhamnetin were shown strong retention to ACE2 overexpression HEK293 (ACE2h ) cells by CMC analysis. Based on drug receptor interaction analysis and viral entry studies in vitro, we evaluated the interaction of two flavonoid compounds and ACE2 as well as the inhibitory effect of the two compounds on viral entry. Surface plasmon resonance assay proved the effect that isorhamnetin bound to the ACE2, and its affinity (KD value) was at the micromolar level, that was, 2.51 ± 0.68 µM. Viral entry studies in vitro indicated that isorhamnetin inhibited SARS-CoV-2 spike pseudotyped virus entering ACE2h cells. Based on promising in vitro results, we proposed isorhamnetin to be a potential therapeutic candidate compound against COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Quercetina/análogos & derivados , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/química , Antivirales , Células HEK293 , Hippophae/química , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Unión Proteica/efectos de los fármacos , Quercetina/química , Quercetina/farmacología , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/química , Pseudotipado Viral , Internalización del Virus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...