Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 277(Pt 2): 134289, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39084442

RESUMEN

Human Serum Albumin (HSA), the most abundant protein in human body fluids, plays a crucial role in the transportation, absorption, metabolism, distribution, and excretion of drugs, significantly influencing their therapeutic efficacy. Despite the importance of HSA as a drug target, the available data on its interactions with external agents, such as drug-like molecules and antibodies, are limited, posing challenges for molecular modeling investigations and the development of empirical scoring functions or machine learning predictors for this target. Furthermore, the reported entries in existing databases often contain major inconsistencies due to varied experiments and conditions, raising concerns about data quality. To address these issues, a pioneering database, HSADab, was established through an extensive review of >30,000 scientific publications published between 1987 and 2023. The database encompasses over 5000 affinity data points at multiple temperatures and >130 crystal structures, including both ligand-bound and apo forms. The current HSADab resource (www.hsadab.cn) serves as a reliable foundation for validating molecular simulation protocols, such as traditional virtual screening workflows using docking, end-point, and al-chemical free energy techniques. Additionally, it provides a valuable data source for the implementation of machine learning predictors, including plasma protein binding models and plasma protein-based drug design models.

2.
Comput Struct Biotechnol J ; 23: 2122-2131, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38817963

RESUMEN

B-cell epitope identification plays a vital role in the development of vaccines, therapies, and diagnostic tools. Currently, molecular docking tools in B-cell epitope prediction are heavily influenced by empirical parameters and require significant computational resources, rendering a great challenge to meet large-scale prediction demands. When predicting epitopes from antigen-antibody complex, current artificial intelligence algorithms cannot accurately implement the prediction due to insufficient protein feature representations, indicating novel algorithm is desperately needed for efficient protein information extraction. In this paper, we introduce a multimodal model called WUREN (Whole-modal Union Representation for Epitope predictioN), which effectively combines sequence, graph, and structural features. It achieved AUC-PR scores of 0.213 and 0.193 on the solved structures and AlphaFold-generated structures, respectively, for the independent test proteins selected from DiscoTope3 benchmark. Our findings indicate that WUREN is an efficient feature extraction model for protein complexes, with the generalizable application potential in the development of protein-based drugs. Moreover, the streamlined framework of WUREN could be readily extended to model similar biomolecules, such as nucleic acids, carbohydrates, and lipids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA