Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(6): 109942, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38812547

RESUMEN

Biofilm formation plays a significant role in antibiotic resistance, necessitating the search for alternative therapies against biofilm-associated infections. This study demonstrates that 20 µg/mL tryptanthrin can hinder biofilm formation above 50% in various A. baumannii strains. Tryptanthrin impacts various stages of biofilm formation, including the inhibition of surface motility and eDNA release in A. baumannii, as well as an increase in its sensitivity to H202. RT-qPCR analysis reveals that tryptanthrin significantly decreases the expression of the following genes: abaI (19.07%), abaR (33.47%), bfmR (43.41%), csuA/B (64.16%), csuE (50.20%), ompA (67.93%), and katE (72.53%), which are related to biofilm formation and quorum sensing. Furthermore, tryptanthrin is relatively safe and can reduce the virulence of A. baumannii in a Galleria mellonella infection model. Overall, our study demonstrates the potential of tryptanthrin in controlling biofilm formation and virulence of A. baumannii by disrupting different stages of biofilm formation and intercellular signaling communication.

2.
Vaccine ; 42(10): 2707-2715, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38503663

RESUMEN

Avian pathogenic Escherichia coli (APEC) is primarily responsible for causing septicemia, pneumonitis, peritonitis, swollen head syndrome, and salpingitis in poultry, leading to significant losses in the poultry sector, particularly within the broiler industry. The removal of the lpxL and lpxM genes led to an eightfold decrease in the endotoxin levels of wild APEC strains. In this study, mutant strains of lpxL/lpxM and their O1, O2, and O78 wild-type strains were developed for an inactivated vaccine (referred to as the mutant vaccine and the wild-type vaccine, respectively), and the safety and effectiveness of these two prototype vaccines were assessed in white Leghorn chickens. Findings indicated that chickens immunized with the mutant vaccine showed a return of appetite sooner post-immunization and experienced earlier disappearance of nodules at the injection site compared to those immunized with the wild-type vaccine. Pathological examinations revealed that lesions were still present in the liver, lung, and injection site in chickens vaccinated with the wild-type vaccine 14 days post-vaccination (dpv), whereas no lesions were found in chickens vaccinated with the mutant vaccine at 14 dpv. There were no significant differences in antibody levels on the challenge day or in mortality or lesion scores between challenged birds immunized with either the mutant vaccine or the wild-type vaccine at the same dose. In this study, the safety of a single dose or overdose of the mutant vaccine and its efficacy at one dose were evaluated in broilers, and the results showed that the mutant vaccine had no adverse effects on or protected vaccinated broilers from challenge with the APEC O1, O2, or O78 strains. These results demonstrated that the mutant polyvalent inactivated vaccine is a competitive candidate against APEC O1, O2, and O78 infection compared to the wild-type vaccine.


Asunto(s)
Infecciones por Escherichia coli , Vacunas contra Escherichia coli , Enfermedades de las Aves de Corral , Animales , Escherichia coli/genética , Pollos , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/veterinaria , Vacunas de Productos Inactivados/efectos adversos
3.
J Virol ; 98(3): e0000724, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38305153

RESUMEN

Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease, which is responsible for enormous economic losses to the global pig industry. Although vaccination has been used to prevent PRV infection, the effectiveness of vaccines has been greatly diminished with the emergence of PRV variants. Therefore, there is an urgent need to develop anti-PRV drugs. Polyethylenimine (PEI) is a cationic polymer and has a wide range of antibacterial and antiviral activities. This study found that a low dose of 1 µg/mL of the 25-kDa linear PEI had significantly specific anti-PRV activity, which became more intense with increasing concentrations. Mechanistic studies revealed that the viral adsorption stage was the major target of PEI without affecting viral entry, replication stages, and direct inactivation effects. Subsequently, we found that cationic polymers PEI and Polybrene interfered with the interaction between viral proteins and cell surface receptors through electrostatic interaction to exert the antiviral function. In conclusion, cationic polymers such as PEI can be a category of options for defense against PRV. Understanding the anti-PRV mechanism also deepens host-virus interactions and reveals new drug targets for anti-PRV.IMPORTANCEPolyethylenimine (PEI) is a cationic polymer that plays an essential role in the host immune response against microbial infections. However, the specific mechanisms of PEI in interfering with pseudorabies virus (PRV) infection remain unclear. Here, we found that 25-kDa linear PEI exerted mechanisms of antiviral activity and the target of its antiviral activity was mainly in the viral adsorption stage. Correspondingly, the study demonstrated that PEI interfered with the virus adsorption stage by electrostatic adsorption. In addition, we found that cationic polymers are a promising novel agent for controlling PRV, and its antiviral mechanism may provide a strategy for the development of antiviral drugs.


Asunto(s)
Antivirales , Herpesvirus Suido 1 , Polietileneimina , Electricidad Estática , Animales , Adsorción/efectos de los fármacos , Antivirales/química , Antivirales/farmacología , Herpesvirus Suido 1/efectos de los fármacos , Herpesvirus Suido 1/metabolismo , Polietileneimina/química , Polietileneimina/farmacología , Seudorrabia/tratamiento farmacológico , Seudorrabia/virología , Porcinos/virología , Enfermedades de los Porcinos/virología
4.
Int J Biol Macromol ; 258(Pt 2): 128990, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38158057

RESUMEN

Plantago asiatica L. (PAL), a traditional herb, has been used in East Asia for thousands of years. In recent years, polysaccharides extracted from PAL have garnered increased attention due to their outstanding pharmacological and biological properties. Previous research has established that PAL-derived polysaccharides exhibit antioxidant, anti-inflammatory, antidiabetic, antitumor, antimicrobial, immune-regulatory, intestinal health-promoting, antiviral, and other effects. Nevertheless, a comprehensive summary of the research related to Plantago asiatica L. polysaccharides (PALP) has not been reported to date. In this paper, we review the methods for isolation and purification, physiochemical properties, structural features, and biological activities of PALP. To provide a foundation for research and application in the fields of medicine and food, this review also outlines the future development prospects of plantain polysaccharides.


Asunto(s)
Plantago , Plantago/química , Antioxidantes/farmacología , Polisacáridos/química , Extractos Vegetales/farmacología , Asia Oriental
5.
Vet Microbiol ; 287: 109897, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37922860

RESUMEN

The infection of porcine circovirus type 2 (PCV2) triggers activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK) pathway and leads to DNA damage. Insulin-like growth factor-binding protein 3 (IGFBP3) may interact with the endoplasmic reticulum (ER). It remains unclear whether IGFBP3 regulates DNA damage via ER stress to mediate PCV2 replication. In this study, we observed an upregulation of porcine IGFBP3 expression during PCV2 infection, and overexpression of IGFBP3 enhanced the expression of PCV2 Cap protein, PCV2 DNA copy number, and viral titers in PK-15 B6 cells and 3D4/21 cells. Additionally, overexpression of IGFBP3 induced an increase in the DNA damage marker γH2AX by activating the PERK/eIF2α pathway without concomitant activation of ATF4, IRE1α, and ATF6α/GRP78 pathways in PK-15 B6 cells and 3D4/21 cells. Knockdown of IGFBP3 had a reverse effect on PCV2 replication in PK-15 B6 cells and 3D4/21 cells. Furthermore, treatment with etoposide enhanced PCV2 replication while KU57788 decreased it. GSK2606414 and salubrinal limited both DNA damage and viral replication. Therefore, our findings suggest that porcine IGFBP3 promotes PCV2 replication through the PERK/eIF2α pathway-mediated induction of DNA damage in PK-15 B6 cells and 3D4/21 cells. Our study provides a basis for exploring novel antiviral strategies via the extensive understanding of the relationships between host cellular proteins and viral replication.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Enfermedades de los Porcinos , Porcinos , Animales , Circovirus/genética , ARN , Proteínas Quinasas , Endorribonucleasas , Línea Celular , Proteínas Serina-Treonina Quinasas , Replicación Viral/genética , Retículo Endoplásmico , Infecciones por Circoviridae/veterinaria
6.
Microbiol Spectr ; : e0213222, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36951571

RESUMEN

Pseudorabies virus (PRV) infection is modulated by various cellular host factors. In this study, we investigated the role of histone deacetylase 6 (HDAC6) in this process. We determined HDAC6 expression in vitro and performed gene knockout, pharmacological inhibition analyses, immunofluorescence assays, and statistical analyses. We found that the pharmacological and genetic inhibition of HDAC6 significantly decreased PRV replication, whereas its overexpression promoted PRV replication. Additionally, we demonstrated that PRV infection can induce the phosphorylation of histone H2AX and lead to DNA damage response (DDR), and the ataxia telangiectasia mutated (ATM) inhibitor KU55933 inhibits DDR and PRV infection. Mechanistically, the HDAC6 inhibitor tubacin and HDAC6 knockout can decrease DDR. The results of this study suggested that HDAC6 may be a crucial factor in PRV-induced ATM-dependent DDR to promote PRV replication. IMPORTANCE Pseudorabies virus (PRV) is a member of the subfamily Alphaherpesvirinae of the family Herpesviridae. PRV infection in swine can lead to high morbidity and mortality of swine, causing huge economic losses. In particular, PRV variants can cause severe damage to the nervous and respiratory systems of humans, revealing that PRV may be a potential zoonotic pathogen. Vaccines for PRV have been developed that can delay or reduce the epidemic, but they currently cannot eliminate this disease completely. Therefore, studies should investigate new targets for the prevention and control of PRV infection. In this study, we demonstrated that HDAC6 can induce ataxia telangiectasia mutated-dependent DNA damage response to foster PRV replication, indicating that HDAC6 is a therapeutic target for PRV infection.

7.
Metabolites ; 12(9)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36144207

RESUMEN

Elevated concentrations of non-esterified fatty acid (NEFA) induced by negative energy balance (NEB) during the transition period of dairy cows is known to be toxic for multiple bovine cell types. However, the effect of NEFA in bovine mammary epithelial cells (BMECs) remains unclear. The present study aimed to explore the role and molecular mechanism of NEFA in endoplasmic reticulum (ER) stress and the subsequent apoptosis in BMECs. The results showed that NEFA increased ER stress and activated the three unfolded protein response (UPR) signaling sub-pathways by upregulating the expression of GRP78, HSP70, XBP1, ATF6, phosphor-PERK, and phosphor-IRE1α. We also found that NEFA dose-dependently induced apoptosis in BMECs, as indicated by flow cytometry analysis and increased apoptotic gene expression. RNA-seq analysis revealed that NEFA induced apoptosis in BMECs, probably via the ATF4-CHOP axis. Mechanistically, our data showed that NEFA increased reactive oxygen species (ROS) levels, resulting in the activation of the MAPK signaling pathway. Moreover, quercetin, a well-known antioxidant, was found to alleviate ER stress-mediated apoptosis in NEFA-treated BMECs. Collectively, our results suggest that NEFA induces ER stress-mediated apoptosis, probably via the ROS/MAPK signaling pathway, as quercetin has been shown to alleviate ER stress-mediated apoptosis in NEFA-treated BMECs.

8.
Viruses ; 14(8)2022 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-36016393

RESUMEN

Pseudorabies virus (PRV) is one of the most important pathogens causing serious diseases and leads to huge economic losses in the global swine industry. With the continuous emergence of PRV variants and the increasing number of cases of human infection, there is an urgent need to develop antiviral drugs. In this study, we discover that Glycyrrhiza polysaccharide (GCP) has anti-PRV infection activity in vitro, and 600 µg/mL GCP can completely block viral infection. The addition of GCP simultaneously with or after PRV infection had a significant inhibitory effect on PRV. Addition of GCP at different times of the virus life cycle mainly led to the inhibition of the attachment and internalization of PRV but does not affect viral replication and release. Our findings suggest that GCP has potential as a drug against PRV infection.


Asunto(s)
Glycyrrhiza , Herpesvirus Suido 1 , Seudorrabia , Enfermedades de los Porcinos , Animales , Línea Celular , Humanos , Polisacáridos/farmacología , Seudorrabia/tratamiento farmacológico , Porcinos , Enfermedades de los Porcinos/tratamiento farmacológico , Acoplamiento Viral , Internalización del Virus
9.
Vet Microbiol ; 272: 109514, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35917623

RESUMEN

Porcine circovirus type 2 (PCV2) is the causative agent of porcine circovirus-associated disease. Changes in host cell gene expression are induced by PCV2 infection. Here, we showed that porcine PDZ Domain-Containing 1 (PDZK1) expression was enhanced during PCV2 infection and that overexpression of PDZK1 inhibited the expression of PCV2 Cap protein. PCV2 genomic DNA copy number and viral titers were decreased in PDZK1-overexpressing PK-15B6 cells. PDZK1 knockdown enhanced the replication of PCV2. Overexpression of PDZK1 activated the phosphoinositide 3-kinase (PI3K)/ERK2 signaling pathway to enhance nitric oxide (NO) levels, while PDZK1 knockdown had the opposite effects. A PI3K inhibitor (LY294002) and a NO synthase inhibitor (L-NAME hydrochloride) decreased the activity of PDZK1 in restricting PCV2 replication. ERK2 knockdown enhanced the proliferation of PCV2 by decreasing levels of NO. Levels of interleukin (IL)- 4 mRNA were reduced in PDZK1 knockdown and ERK2 knockdown PK-15B6 cells. Increased IL-4 mRNA levels were unable to decrease NO production in PDZK1-overexpressing cells. Thus, we conclude that PDZK1 affected PCV2 replication by regulating NO production via PI3K/ERK2 signaling. PDZK1 affected IL-4 expression through the PI3K/ERK2 pathway, but PDZK1 modulation of PCV2 replication occurred independently of IL-4. Our results contribute to understanding the biological functions of PDZK1 and provide a theoretical basis for the pathogenic mechanisms of PCV2.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Animales , Línea Celular , Infecciones por Circoviridae/veterinaria , Circovirus/genética , Interleucina-4 , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasa/farmacología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Mensajero/metabolismo , Porcinos , Replicación Viral
10.
Front Vet Sci ; 9: 896689, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847653

RESUMEN

Variant pseudorabies viruses (vPRV) have constantly emerged in China since late 2011. In the present study, a 1 × 106.0 TCID50 per-animal dosage of a commercially available Bartha-K61 vaccine and an rPRV/XJ5-gI-/gE-/TK- prototype vaccine freshly extracted from the vPRV/XJ-5 at the same dose were administered to evaluate the immune effectiveness thereof on growing pigs to prevent lethal strikes caused by vPRV/XJ-5. The results suggest that the Bartha-K61 vaccine at a dose of 1 × 106.0 TCID50 per animal and the same dosage of the rPRV/XJ5-gI-/gE-/TK- prototype vaccine protected growing pigs against the lethal challenge of vPRV/XJ-5 strain with 100% survive rate. Furthermore, the outcome of the clinical score, virus shedding, weight gain, and viral loads in different pig tissues in these two groups demonstrates that either the Bartha-K61 vaccine or the rPRV/XJ5-gI-/gE-/TK- prototype vaccine at the same dose exhibited parallel efficacy in pigs against the lethal challenge with the XJ-5 strain of vPRV.

11.
Viruses ; 14(4)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35458475

RESUMEN

A pseudorabies virus (PRV) novel virulent variant outbreak occurred in China in 2011. However, little is known about PRV prevention and treatment. Huaier polysaccharide has been used to treat some solid cancers, although its antiviral activity has not been reported. Our study confirmed that the polysaccharide can effectively inhibit infection of PRV XJ5 in PK15 cells. It acted in a dose-dependent manner when blocking virus adsorption and entry into PK15 cells. Moreover, it suppressed PRV replication in PK15 cells. In addition, the results suggest that Huaier polysaccharide plays a role in treating PRV XJ5 infection by directly inactivating PRV XJ5. In conclusion, Huaier polysaccharide might be a novel therapeutic agent for preventing and controlling PRV infection.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Virus no Clasificados , Adsorción , Animales , Línea Celular , Mezclas Complejas , Polisacáridos/farmacología , Trametes
12.
Int J Biol Macromol ; 207: 454-463, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35278510

RESUMEN

Pseudorabies virus (PRV) is an alpha herpesvirus that causes pseudorabies. After 2011, new and more pathogenic PRV variants have caused huge economic losses to the pig industry. In addition, people have been reported to be infected with PRV. Therefore, developing new anti-PRV drugs is of great significance. In this study, we investigated the anti-PRV activity of Hippophae rhamnoides polysaccharides (HRP) in vitro. We found that HRP could significantly inhibit the infectivity of the PRV XJ5 strain in PK15 cells. Addition of HRP at different times of the virus life cycle mainly led to the inhibition of the adsorption and entry of virus into the cells. Our results revealed that HRP can reduce the malondialdehyde (MDA) content and reactive oxygen species (ROS) level in PRV-infected PK15 cells and increase the superoxide dismutase (SOD) activity. These results suggested that HRP can reduce PRV infection-induced oxidative stress. Therefore, HRP may act as an antiviral drug against newly emerging PRV variants.


Asunto(s)
Herpesvirus Suido 1 , Hippophae , Adsorción , Animales , Línea Celular , Humanos , Estrés Oxidativo , Polisacáridos/farmacología , Porcinos
13.
Poult Sci ; 101(4): 101759, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35240354

RESUMEN

Oxidative stress is the downstream of various adverse stresses which impairs meat quality of broiler chickens. Yet, the specific molecular mechanisms of oxidative stress in meat quality of broiler thigh muscle remains unclear. This study investigated the effects and mechanisms of H2O2-induced oxidative stress on meat quality of broiler thigh muscle, with particular emphasis on apoptosis and autophagy and the ROS/NF-κB signaling pathway. The results showed that 10%H2O2-treated broilers exhibited significantly higher drip loss and shear force and lower pH24h and muscle weight. Moreover, the ROS formation, the contents of oxidation products, the expressions of caspases (3, 6, 8, 9), Beclin1, and LC3-II/LC3-I were significantly increased, whereas the levels of antioxidation products and the expression of phosphorylation of NF-κBp65 were significantly decreased. These findings from the present study indicating that H2O2-induced oxidative stress significantly impaired the meat quality by inducing apoptosis and abnormal autophagy via ROS/NF-κB signaling pathway in the broiler thigh muscle.


Asunto(s)
Pollos , Peróxido de Hidrógeno , Carne , Músculo Esquelético , FN-kappa B , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Carne/análisis , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Muslo
14.
Molecules ; 27(4)2022 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35209042

RESUMEN

Porcine pseudorabies (PR) is an important infectious disease caused by pseudorabies virus (PRV), which poses a major threat to food safety and security. Vaccine immunization has become the main means to prevent and control the disease. However, since 2011, a new PRV variant has caused huge economic losses to the Chinese pig industry. Panax notoginseng polysaccharides have immunomodulatory activity and other functions, but the antiviral effect has not been reported. We studied the anti-PRV activity of Panax notoginseng polysaccharides in vitro. A less cytopathic effect was observed by increasing the concentration of Panax notoginseng polysaccharides. Western blot, TCID50, plaque assay, and IFA revealed that Panax notoginseng polysaccharides could significantly inhibit the infectivity of PRV XJ5 on PK15 cells. In addition, we also found that Panax notoginseng polysaccharides blocked the adsorption and replication of PRV to PK15 cells in a dose-dependent manner. These results show that Panax notoginseng polysaccharides play an antiviral effect mainly by inhibiting virus adsorption and replication in vitro. Therefore, Panax notoginseng polysaccharides may be a potential anti-PRV agent.


Asunto(s)
Herpesvirus Suido 1/fisiología , Factores Inmunológicos/farmacología , Panax notoginseng/química , Polisacáridos/farmacología , Seudorrabia/metabolismo , Enfermedades de los Porcinos/metabolismo , Acoplamiento Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Línea Celular , Factores Inmunológicos/química , Polisacáridos/química , Seudorrabia/tratamiento farmacológico , Seudorrabia/patología , Porcinos , Enfermedades de los Porcinos/patología , Enfermedades de los Porcinos/virología
15.
Oxid Med Cell Longev ; 2022: 3570475, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35096266

RESUMEN

Pseudorabies (PR) is an acute infectious disease of various domestic animals and wild animals caused by pseudorabies virus (PRV). It is mainly characterized by fever, itching, encephalomyelitis, and respiratory and neurological disorders. Plantago asiatica polysaccharide (PLP), extracted from the whole plant of Plantago asiatica L., showed immunomodulatory and antioxidation effects, but the antiviral activity had not been reported. In this study, the inhibitory effect of PLP on PRV infection was studied. Our study first revealed that PLP could inhibit PRV infection in a dose-dependent manner. By adding PLP at different stages of the virus's life cycle, we revealed that PLP could reduce the attachment and penetration of PRV into PK15 cells. The inhibition of PRV attachment was better than inhibition of PRV penetration. However, PLP did not affect PRV replication and inactivation. In addition, PLP decreased the intracellular ROS levels in infected cells significantly, and ROS scavenger NAC decreased PRV infection. Therefore, our study provided preliminary data of anti-PRV activity of PLP, which was established to be a novel anti-PRV infection agent.


Asunto(s)
Antivirales/uso terapéutico , Plantago/química , Seudorrabia/virología , Animales , Antivirales/farmacología
16.
Front Pharmacol ; 12: 680674, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34295250

RESUMEN

Liquorice is a traditional medicine. Triterpenoids such as glycyrrhizin and glycyrrhetinic acid are the main active constituents of liquorice. Studies have revealed that these compounds exert inhibitory effects on several viruses, including SARS-CoV-2. The main mechanisms of action of these compounds include inhibition of virus replication, direct inactivation of viruses, inhibition of inflammation mediated by HMGB1/TLR4, inhibition of ß-chemokines, reduction in the binding of HMGB1 to DNA to weaken the activity of viruses, and inhibition of reactive oxygen species formation. We herein review the research progress on the antiviral effects of glycyrrhizin and its derivatives. In addition, we emphasise the significance of exploring unknown antiviral mechanisms, structural modifications, and drug combinations in future studies.

17.
Virus Res ; 301: 198435, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33961899

RESUMEN

Porcine circovirus type 2 (PCV2) is the primary causative agent of postweaning multisystemic wasting syndrome (PMWS) and causes heavy economic losses to the porcine industry worldwide. In this study, PK-15 cells were infected with PCV2 for 48 h, then harvested and subjected to label-free quantitative proteomic mass spectrometry. In total, 1212 proteins were differentially expressed in PCV2-infected cells compared with mock-infected cells, including 796 upregulated and 416 downregulated proteins. Gene ontology analysis showed that these differentially expressed proteins were involved in biological processes, cellular components and molecular functions, and these categories included cellular processes, environmental information processing, genetic information processing, disease, metabolism, and body systems. Enrichment analysis of the KEGG pathway showed that innate immune responses were significantly enriched. AlphaB-crystallin (CRYAB) interacts with desmin and cytoplasmic actin to prevent protein misfolding and aggregation, helping to maintain cytoskeletal integrity and promoting cell proliferation. In this study, CRYAB was found to effect the replication of PCV2, as verified by qRT-PCR, TCID50 determination and western blot analysis. Overexpression of CRYAB significantly upregulated PCV2 capsid protein and increased viral titers in both PK-15 cells and culture supernatants, whereas the opposite results were obtained in CRYAB knockdown cells. Furthermore, we revealed that the promotion of PCV2 replication by CRYAB was dependent on cell proliferation. To our knowledge, this is the first report of the effect of CRYAB on PCV2 replication and our findings contribute to a greater understanding of the mechanism of PCV2 replication and pathogenesis, as well as the host's response to PCV2 infection.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Cristalinas , Animales , Línea Celular , Proliferación Celular , Infecciones por Circoviridae/patología , Circovirus/genética , Proteómica , Porcinos
18.
Front Pharmacol ; 12: 628526, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33692691

RESUMEN

There are currently no licensed drugs against porcine epidemic diarrhea virus (PEDV), but vaccines are available. We identified a natural molecule, epigallocatechin-3-gallate (EGCG), the main polyphenol in green tea, which is effective against infection with PEDV. We used a variety of methods to test its effects on PEDV in Vero cells. Our experiments show that EGCG can effectively inhibit PEDV infections (with HLJBY and CV777 strains) at different time points in the infection using western blot analysis. We found that EGCG inhibited PEDV infection in a dose-dependent manner 24 h after the infection commenced using western blotting, plaque formation assays, immunofluorescence assays (IFAs), and quantitative reverse-transcriptase PCR (qRT-PCR). We discovered that EGCG treatment of Vero cells decreased PEDV attachment and entry into them by the same method analysis. Western blotting also showed that PEDV replication was inhibited by EGCG treatment. Whereas EGCG treatment was found to inhibit PEDV assembly, it had no effect on PEDV release. In summary, EGCG acts against PEDV infection by inhibiting PEDV attachment, entry, replication, and assembly.

19.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340172

RESUMEN

Our previous study showed that glycyrrhizin (GLY) inhibited porcine epidemic diarrhea virus (PEDV) infection, but the mechanisms of GLY anti-PEDV action remain unclear. In this study, we focused on the anti-PEDV and anti-proinflammatory cytokine secretion mechanisms of GLY. We found that PEDV infection had no effect on toll-like receptor 4 (TLR4) protein and mRNA levels, but that TLR4 regulated PEDV infection and the mRNA levels of proinflammatory cytokines. In addition, we demonstrated that TLR4 regulated p38 phosphorylation but not extracellular regulated protein kinases1/2 (Erk1/2) and c-Jun N-terminal kinases (JNK) phosphorylation, and that GLY inhibited p38 phosphorylation but not Erk1/2 and JNK phosphorylation. Therefore, we further explored the relationship between high mobility group box-1 (HMGB1) and p38. We demonstrated that inhibition of HMGB1 using an antibody, mutation, or knockdown decreased p38 phosphorylation. Thus, HMGB1 participated in activation of p38 through TLR4. Collectively, our data indicated that GLY inhibited PEDV infection and decreased proinflammatory cytokine secretion via the HMGB1/TLR4-mitogen-activated protein kinase (MAPK) p38 pathway.


Asunto(s)
Ácido Glicirrínico/farmacología , Proteína HMGB1/metabolismo , Virus de la Diarrea Epidémica Porcina/efectos de los fármacos , Virus de la Diarrea Epidémica Porcina/fisiología , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Células Cultivadas , Chlorocebus aethiops , Infecciones por Coronavirus/veterinaria , Porcinos , Enfermedades de los Porcinos/metabolismo , Enfermedades de los Porcinos/virología , Células Vero
20.
Front Cell Infect Microbiol ; 10: 616895, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33520741

RESUMEN

A newly emerged pseudorabies virus (PRV) variant with enhanced pathogenicity has been identified in many PRV-vaccinated swine in China since 2011. The PRV variant has caused great economic cost to the swine industry, and measures for the effective prevention and treatment of this PRV variant are still lacking. (-)-Epigallocatechin-3-gallate (EGCG) exhibits antiviral activity against diverse viruses and thus in this study, we investigated the anti-PRV activity of EGCG in vitro and in vivo. EGCG significantly inhibited infectivity of PRV Ra and PRV XJ5 strains in PK15 B6 cells and Vero cells. The anti-PRV activity of EGCG was dose-dependent, and 50 µM EGCG could completely block viral infection at different multiplicities of infection. We next revealed that EGCG blocked PRV adsorption and entry to PK15 B6 cells in a dose-dependent manner, but inhibition of PRV entry by EGCG was not as efficient as its inhibition of PRV adsorption. PRV replication was suppressed in PK15 B6 cells treated with EGCG post-infection. However, EGCG did not affect PRV assembly and could promote PRV release. Furthermore, 40 mg/kg EGCG provided 100% protection in BALB/c mice challenged with PRV XJ5, when EGCG was administrated both pre- and post-challenge. These results revealed that EGCG exhibits antiviral activity against PRV mainly by inhibiting virus adsorption, entry and replication in vitro. Meanwhile, EGCG increased the survival of mice challenged with PRV. Therefore, EGCG might be a potential antiviral agent against PRV infection.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Animales , Catequina/análogos & derivados , China , Chlorocebus aethiops , Estadios del Ciclo de Vida , Ratones , Ratones Endogámicos BALB C , Seudorrabia/prevención & control , Porcinos , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...