Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale Horiz ; 8(3): 404-411, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36723237

RESUMEN

Two-dimensional (2D) materials tend to have the preferable formation of vacancies at the outer surface. Here, contrary to the normal notion, we reveal a type of vacancy that thermodynamically initiates from the interior part of the 2D backbone of germanium selenide (γ-GeSe). Interestingly, the Ge-vacancy (VGe) in the interior part of γ-GeSe possesses the lowest formation energy amongst the various types of defects considered. We also find a low diffusion barrier (1.04 eV) of VGe, which is half of those of sulfur vacancies in MoS2. The facile formation of mobile VGe is rooted in the antibonding coupling of the lone-pair Ge 4s and Se 4p states near the valence band maximum, which also exists in other gamma-phase MX (M = Sn, Ge; X = S, Te). The VGe is accompanied by a shallow acceptor level in the band gap and induces strong infrared light absorption and p-type conductivity. The VGe located in the middle cationic Ge sublattice is well protected by the surface Se layers - a feature that is absent in other atomically thin materials. Our work suggests that the unique well-buried inner VGe, with the potential of forming structurally protected ultrathin conducting filaments, may render the GeSe layer an ideal platform for quantum emitting, memristive, and neuromorphic applications.

2.
ACS Appl Mater Interfaces ; 10(15): 12759-12767, 2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29589429

RESUMEN

Paraffin wax (PW) is widely used for smart thermoregulation materials due to its good thermal performance. However, the leakage and low thermal conductivity of PW hinder its application in the heat storage field. Accordingly, developing effective methods to address these issues is of great importance. In this study, we explored a facile approach to obtain PW-loaded core-sheath structured flexible nanofibers films via coaxial electrospinning technique. The PW as the core layer was successfully encapsulated by the sheath-layer poly(methyl methacrylate). The diameter of the fiber core increased from 395 to 848 nm as the core solution speed rate increased from 0.1 to 0.5 mL/h. In addition, it can be seen that higher core solution speed rate could lead to higher PW encapsulation efficiency according to the transmission electron microscopy results. The core-sheath nanofiber films, moreover, possessed the highest latent heat of 58.25 J/g and solidifying enthalpy of -56.49 J/g. In addition, we found that after 200 thermal cycles, there was little change in latent heat, which demonstrated that it is beneficial for the PW-loaded core-sheath structure to overcome the leakage issue and enhance thermal stability properties for the thermoregulation film.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA