Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(37): eadp1796, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39259803

RESUMEN

Continuous industrialization has raised daunting environmental concerns, and there is an urgent need to develop a sustainable strategy to tackle the contamination issues. Here, we report a supramolecular photoenzyme ensemble enabling the harvest of solar energy to remove contaminations in water. The well-sourced oxidoreductase, laccase, is confined into a photoactive hydrogen-bonded organic framework (PHOF) through an in situ encapsulation method. The direct electron migration between the oxidation center in a PHOF and the reduction center in laccase facilitates synergistic photoenzyme-coupled catalysis, showing two orders of magnitude higher activity than free laccase for pollutant degradation under visible light, without the need for sacrificial agents or costly co-mediators. Such high decontamination efficiency also surpasses the reported catalysts. The structure and decontamination function of this supramolecular photoenzyme ensemble remain highly stable in complex environment matrices, presenting desirable reusability and almost 100% conversion efficiency of pollutants for real sewage samples. Our conceptual photoenzyme hybrid catalyst offers important insights into green and sustainable water decontamination.

2.
J Am Chem Soc ; 146(3): 1967-1976, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38131319

RESUMEN

Engineering nanotraps to immobilize fragile enzymes provides new insights into designing stable and sustainable biocatalysts. However, the trade-off between activity and stability remains a long-standing challenge due to the inevitable diffusion barrier set up by nanocarriers. Herein, we report a synergetic interfacial activation strategy by virtue of hydrogen-bonded supramolecular encapsulation. The pore wall of the nanotrap, in which the enzyme is encapsulated, is modified with methyl struts in an atomically precise position. This well-designed supramolecular pore results in a synergism of hydrogen-bonded and hydrophobic interactions with the hosted enzyme, and it can modulate the catalytic center of the enzyme into a favorable configuration with high substrate accessibility and binding capability, which shows up to a 4.4-fold reaction rate and 4.9-fold conversion enhancements compared to free enzymes. This work sheds new light on the interfacial activation of enzymes using supramolecular engineering and also showcases the feasibility of interfacial assembly to access hierarchical biocatalysts featuring high activity and stability simultaneously.


Asunto(s)
Hidrógeno , Catálisis , Hidrógeno/química
3.
ACS Nano ; 17(23): 24130-24140, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38015792

RESUMEN

Biomineralization is a natural process of mineral formation mediated by biomacromolecules, allowing access to hierarchical structures integrating biological, chemical, and material properties. In this contribution, we comprehensively investigate the biomineralization of zeolite imidazole frameworks (ZIFs) for one-step synthesis of an enzyme-MOF biocomposite, in terms of differential crystallization behaviors, fine microstructure of resultant ZIF biominerals, the enzyme's conformation evolution, and protective effect of ZIF mineral. We discover that the biomineralization ability is ZIF organic linker dependent and the biocatalytic function is highly related to the ZIF mineral species and their distinguishable topologies and defect structures. Importantly, a side-by-side analysis suggests that the protective effect of ZIF mineral toward the hosted enzyme is highly associated with the synergistic effect of size dimension and chemical microenvironment of the ZIF pores. This work provides important insight into the ZIF-dependent biomineralization behaviors and highlights the important role of the ZIF microstructure in its biocatalytic activity and durability, which has been underestimated previously.


Asunto(s)
Estructuras Metalorgánicas , Zeolitas , Estructuras Metalorgánicas/química , Zeolitas/química , Enzimas Inmovilizadas/química , Biocatálisis , Imidazoles/química
4.
Nanoscale ; 12(11): 6498-6511, 2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32154811

RESUMEN

The delivery of drugs across the blood-brain barrier (BBB) effectively and safely is one of the major challenges in the treatment of neurodegenerative diseases. In this work, we constructed a nano-system using microbubbles to promote the crossing of drugs across the BBB, where microbubbles in combination with focused ultrasound were used to mediate the transient opening of the BBB and delivery of nanomedicines. This system (Qc@SNPs-MB) was formed by embedding quercetin-modified sulfur nanoparticles (Qc@SNPs) in microbubbles (MB). Qc@SNPs-MB was destroyed instantly when exposed to ultrasonic pulses, and it enhanced the permeability of the blood vessels, resulting in the brief opening of the BBB owing to the "sonoporation" effect. Also, Qc@SNPs were released from the outer shell of the microbubbles and entered the brain across the open BBB, accumulating in the brain parenchyma. Due to the rapid accumulation of Qc@SNPs in the brain, it effectively reduced neuronal apoptosis, inflammatory response, calcium homeostasis imbalance, and oxidative stress, which are all mediated by endoplasmic reticulum stress, and protected nerve cells, thus treating Alzheimer's disease (AD) effectively. The Morris water maze experiment showed that the learning ability and memory ability of the AD mice treated with Qc@SNPs were significantly improved, and no obvious side effects were found. Therefore, Qc@SNPs-MB combined with ultrasound can provide an effective and safe drug delivery method for the treatment of neurodegenerative diseases and a promising strategy for endoplasmic reticulum stress therapy.


Asunto(s)
Enfermedad de Alzheimer , Barrera Hematoencefálica , Sistemas de Liberación de Medicamentos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Microburbujas/provisión & distribución , Nanopartículas , Quercetina , Ondas Ultrasónicas , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Línea Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Nanopartículas/química , Nanopartículas/uso terapéutico , Quercetina/química , Quercetina/farmacocinética , Quercetina/farmacología
5.
Biomaterials ; 237: 119822, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32035322

RESUMEN

Alzheimer's disease (AD) seriously affects human health and life and lacks effective treatments. The lessons of many clinical trial failures suggest that targeting amyloid beta to treat AD is difficult, and finding new targets is an important direction for AD drug research. The neurofibrillary tangles formed by hyperphosphorylation of tau protein induce the production of cytotoxic reactive oxygen species (ROS) and cause neuronal apoptosis. Therefore, inhibition of hyperphosphorylation of tau protein and reduction of neuronal damage have become promising methods for the treatment of AD. We herein designed a novel nanocomposite with high stability and good biocompatibility by using flower-shaped hollow nano-ruthenium (Ru NPs) as a carrier, loading nerve growth factor (NGF) and sealing with phase change material (PCM). Due to its excellent photothermal effect, under the near-infrared (NIR) irradiation, the nanocomposite could effectively penetrate the blood-brain barrier (BBB) and respond to phase changes in the lesion area, releasing NGF, which inhibited tau hyperphosphorylation, reduced oxidative stress, and more importantly restored nerve damage and maintained neuronal morphology, thereby significantly improving learning and memory in AD mice. Thus, the experimental results indicate that multifunctional nanocomposites may be a promising drug in the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Rutenio , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Animales , Preparaciones de Acción Retardada/uso terapéutico , Ratones , Factor de Crecimiento Nervioso/uso terapéutico , Fosforilación , Rutenio/uso terapéutico , Proteínas tau/metabolismo , Proteínas tau/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA