Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Front Microbiol ; 15: 1396213, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149212

RESUMEN

Bacterial wilt (BW) is a devastating plant disease caused by the soil-borne bacterium Ralstonia solanacearum species complex (Rssc). Numerous efforts have been exerted to control BW, but effective, economical, and environmentally friendly approaches are still not available. Bacteriophages are a promising resource for the control of bacterial diseases, including BW. So, in this study, a crop BW pathogen of lytic bacteriophage was isolated and named PQ43W. Biological characterization revealed PQ43W had a short latent period of 15 min, 74 PFU/cell of brust sizes, and good stability at a wide range temperatures and pH but a weak resistance against UV radiation. Sequencing revealed phage PQ43W contained a circular double-stranded DNA genome of 47,156 bp with 65 predicted open reading frames (ORFs) and genome annotation showed good environmental security for the PQ43W that no tRNA, antibiotic resistance, or virulence genes contained. Taxonomic classification showed PQ43W belongs to a novel genus of subfamily Kantovirinae under Caudoviricetes. Subsequently, a dose of PQ43W for phage therapy in controlling crop BW was determined: 108 PFU*20 mL per plant with non-invasive irrigation root application twice by pot experiment. Finally, a field experiment of PQ43W showed a significantly better control effect in crop BW than the conventional bactericide Zhongshengmycin. Therefore, bacteriophage PQ43W is an effective bio-control resource for controlling BW diseases, especially for crop cultivation.

2.
Org Biomol Chem ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39118484

RESUMEN

Titanium, as an important transition metal, has garnered extensive attention in both industry and academia due to its excellent mechanical properties, corrosion resistance, and unique reactivity in organic synthesis. In the field of organic photocatalysis, titanium-based compounds such as titanium dioxide (TiO2), titanocenes (Cp2TiCl2, CpTiCl3), titanium tetrachloride (TiCl4), tetrakis(isopropoxy)titanium (Ti(OiPr)4), and chiral titanium complexes have demonstrated distinct reactivity and selectivity. This review focuses on the roles of these titanium compounds in photocatalytic organic reactions, and highlights the reaction pathways such as photo-induced single-electron transfer (SET) and ligand-to-metal charge transfer (LMCT). By systematically surveying the latest advancements in titanium-involved organic photocatalysis, this review aims to provide references for further research and technological innovation within this fast-developing field.

3.
J Colloid Interface Sci ; 676: 1044-1054, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39074407

RESUMEN

Peroxymonosulfate (PMS) activation on efficient catalysts is a promising strategy to produce sulfate radical (SO4-) and singlet oxygen (1O2) for the degradation of refractory organic pollutants. It is a great challenge to selectively generate these two reactive oxygen species, and the regulation mechanism from non-radical to radical pathway and vice versa is not well established. Here, we report a strategy to regulate the activation mechanism of PMS for the selective generation of SO4- and 1O2 with 100 % efficiency by sulfur-doped cobalt cubic assembly catalysts that was derived from the Co-Co Prussian blue analog precursor. This catalyst showed superior catalytic performance in activating PMS with normalized reaction rate increased by 87 times that of the commercial Co3O4 nanoparticles and had much lower activation energy barrier for the degradation of organic pollutant (e.g., p-chlorophenol) (18.32 kJ⋅mol-1). Experimental and theoretical calculation results revealed that S doping can regulate the electronic structure of Co active centers, which alters the direction of electron transfer between catalyst and PMS. This catalyst showed a strong tolerance to common organic compounds and anions in water, wide environmental applicability, and performed well in different real-water systems. This study provides new opportunities for the development of metal catalyst with metal-organic frameworks structure and good self-regeneration ability geared specifically towards PMS-based advanced oxidation processes applied for water remediation.

4.
Org Biomol Chem ; 22(30): 6198-6204, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39028029

RESUMEN

We report herein a visible-light induced, Fe-catalyzed selenocyclization of 2-ethynylanilines with diselenides under ambient conditions, employing ethyl acetate as a benign solvent with no stoichiometric additive required. The simple iron salt FeBr3 serves as both a photo-induced LMCT (Ligand-to-Metal Charge Transfer) catalyst and a Lewis acid catalyst to promote the desired transformation in a sustainable manner, enabling the facile synthesis of diverse 3-selenylindoles with extended substitution patterns. Moreover, gram-scale reactions and late-stage functionalization of bioactive molecules further highlight the synthetic practicality of this method.

5.
Environ Sci Technol ; 58(26): 11843-11854, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38952299

RESUMEN

Advanced oxidation processes (AOPs) are the most efficient water cleaning technologies, but their applications face critical challenges in terms of mass/electron transfer limitations and catalyst loss/deactivation. Bipolar electrochemistry (BPE) is a wireless technique that is promising for energy and environmental applications. However, the synergy between AOPs and BPE has not been explored. In this study, by combining BPE with AOPs, we develop a general approach of using carbon nanotubes (CNTs) as electric-field-induced bipolar electrodes to control electron transfer for efficient water purification. This approach can be used for permanganate and peroxide activation, with superior performances in the degradation of refractory organic pollutants and excellent durability in recycling and scale-up experiments. Theoretical calculations, in situ measurements, and physical experiments showed that an electric field could substantially reduce the energy barrier of electron transfer over CNTs and induce them to produce bipolar electrodes via electrochemical polarization or to form monopolar electrodes through a single particle collision effect with feeding electrodes. This approach can continuously provide activated electrons from one pole of bipolar electrodes and simultaneously achieve "self-cleaning" of catalysts through CNT-mediated direct oxidation from another pole of bipolar electrodes. This study provides a fundamental scientific understanding of BPE, expands its scope in the environmental field, and offers a general methodology for water purification.


Asunto(s)
Electrodos , Nanotubos de Carbono , Oxidación-Reducción , Purificación del Agua , Nanotubos de Carbono/química , Purificación del Agua/métodos , Catálisis
6.
Artículo en Inglés | MEDLINE | ID: mdl-39017669

RESUMEN

A bacterial strain, designated S6T, was isolated from the sandy soil on a rocky mountain in South China. Cells of S6T were Gram-stain-negative, aerobic, non-spore-forming, non-motile and non-prosthecae-producing. 16S rRNA gene sequence analysis revealed the highest similarities to 12 uncultured bacteria, followed by Phenylobacterium sp. B6.10-61 (97.14 %). The closest related validly published strains are Caulobacter henricii ATCC 15253T (96.15 %), Phenylobacterium conjunctum FWC 21T (96.08 %) and Caulobacter mirabilis FWC 38T (96.08 %). Phylogenetic analysis based on 16S rRNA gene, genome and proteome sequences demonstrated that S6T formed a separated lineage in the genus Phenylobacterium. Strain S6T contained Q-10 (97.5 %) as the major ubiquinone and C18 : 1 ω7c and C16 : 0 as the major fatty acids. The polar lipid profile consisted of phosphatidylglycerol, an unknown phosphoglycolipid and three unknown glycolipids. The assembled genome comprises a chromosome with a length of 5.5 Mb and a plasmid of 96 014 bp. The G+C content was 67.6 mol%. The morphological, physiological, chemotaxonomic and phylogenetic analyses clearly distinguished this strain from its closest phylogenetic neighbours. Thus it is proposed that strain S6T represents a novel species in the genus Phenylobacterium, for which the name Phenylobacterium montanum sp. nov. is proposed. The type strain is S6T (=NBRC 115419T=GCMCC 1.18594T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Microbiología del Suelo , Ubiquinona , ARN Ribosómico 16S/genética , Ácidos Grasos/análisis , ADN Bacteriano/genética , China , Fosfolípidos/análisis , Fosfolípidos/química , Genoma Bacteriano , Arena/microbiología
7.
Mycopathologia ; 189(4): 59, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890181

RESUMEN

Dermatophyte biofilms frequently count for inadequate responses and resistance to standard antifungal treatments, resulting in refractory chronic onychomycosis infection. Although antimicrobial photodynamic therapy (aPDT) has clinically proven to exert significant antifungal effects or even capable of eradicating dermatophyte biofilms, considerably less is known about the molecular mechanisms underlying aPDT and the potential dysregulation of signaling networks that could antagonize its action. The aim of this study is to elucidate the molecular mechanisms underlining aPDT combat against dermatophyte biofilm in recalcitrant onychomycosis and to decipher the potential detoxification processes elicited by aPDT, facilitating the development of more effective photodynamic interventions. We applied genome-wide comparative transcriptome analysis to investigate how aPDT disrupting onychomycosis biofilm formed by three distinct dermatophytes, including Trichophyton rubrum, Trichophyton mentagrophytes, and Microsporum gypseum, the most frequently occurring pathogenic species. In total, 352.13 Gb of clean data were obtained for the transcriptomes of dermatophyte biofilms with or without aPDT treatment, resulting in 2,422.42 million reads with GC content of 51.84%, covering 99.9%, 98.5% and 99.4% of annotated genes of T. rubrum, T. mentagrophytes, and M. gypseum, respectively. The genome-wide orthologous analysis identified 6624 transcribed single-copy orthologous genes in all three species, and 36.5%, 6.8% and 17.9% of which were differentially expressed following aPDT treatment. Integrative orthology analysis demonstrated the upregulation of oxidoreductase activities is a highly conserved detoxification signaling alteration in response to aPDT across all investigated dermatophyte biofilms. This study provided new insights into the molecular mechanisms underneath anti-dermatophyte biofilm effects of aPDT and successfully identified a conserved detoxification regulation upon the aPDT application.


Asunto(s)
Arthrodermataceae , Biopelículas , Perfilación de la Expresión Génica , Fotoquimioterapia , Biopelículas/efectos de los fármacos , Arthrodermataceae/efectos de los fármacos , Arthrodermataceae/genética , Microsporum/efectos de los fármacos , Microsporum/genética , Humanos , Antifúngicos/farmacología , Onicomicosis/microbiología , Onicomicosis/tratamiento farmacológico , Transcriptoma
8.
J Clin Nurs ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38894587

RESUMEN

PURPOSE: There are few reports on compliance with oral nutritional supplements (ONS) after surgery in hospitalized patients. This study aimed to investigate the compliance with ONS and its influencing factors after surgery in colorectal cancer patients. METHODS: STROBE checklist was used during the preparation of this paper. A total of 103 postoperative colorectal cancer patients were selected from November 2020 to April 2021 from the Department of Anorectal Surgery in our institution, which is a tertiary hospital in Hangzhou, China. The compliance with ONS was recorded by a self-record sheet, and sociodemographic and disease-related information of these patients was gathered through a self-designed questionnaire. RESULTS: The overall ONS compliance rate of patients with colorectal cancer was 57.6%. Results of univariate analysis revealed that ONS compliance rate was related to sex, admission body mass index, abdominal distension, attitude towards ONS, and satisfaction with ONS. Multi-factor analysis showed that age, sex, and perceived benefits of nutrition therapy independently influenced the ONS compliance rate. CONCLUSIONS: The postoperative ONS compliance rate of colorectal cancer patients needs to be further improved. Healthcare professionals should pay more attention to the postoperative ONS compliance and acknowledging the influence of age, gender, and attitudes towards ONS on ONS compliance. Notably, patients' perspectives towards ONS play a crucial and modifiable role in determining ONS compliance. Nurses ought to assist patients in cultivating a positive attitude towards ONS. RELEVANCE TO CLINICAL PRACTICE: Dosage form and delivery method are also influence factors that deserves further exploration in the future. Future research endeavours should endeavour to craft tailored, meticulous nutritional intervention strategies tailored to the diverse factors that influence ONS compliance, ultimately leading to enhanced ONS adherence. Our findings could serve as valuable evidence for the development of strategies aimed at enhancing ONS usage practices.

9.
J Diabetes Metab Disord ; 23(1): 353-364, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38932858

RESUMEN

Purpose: Microgravity, characterized by gravity levels of 10-3-10-6g, has been found to significantly impair various physiological systems in astronauts, including cardiovascular function, bone density, and metabolism. With the recent surge in human spaceflight, understanding the impact of microgravity on biological health has become paramount. Methods: A comprehensive literature search was performed using the PubMed database to identify relevant publications pertaining to the interplay between gut microbiome, microgravity, space environment, and metabolic diseases. Results: This comprehensive review primarily focuses on the progress made in investigating the gut microbiome and its association with metabolic diseases under microgravity conditions. Microgravity induces notable alterations in the composition, diversity, and functionality of the gut microbiome. These changes hold direct implications for metabolic disorders such as cardiovascular disease (CVD), bone metabolism disorders, energy metabolism dysregulation, liver dysfunction, and complications during pregnancy. Conclusion: This novel perspective is crucial for preparing for deep space exploration and interstellar migration, where understanding the complex interplay between the gut microbiome and metabolic health becomes indispensable.

10.
Ecotoxicol Environ Saf ; 279: 116494, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38820878

RESUMEN

Di-(2-ethylhexyl)-phthalate (DEHP), as distinctive endocrine disrupting chemicals, has become a global environmental pollutant harmful to human and animal health. However, the impacts on offspring and mothers with maternal DEHP exposure are largely unknown and the mechanism remains elusive. We established DEHP-exposed maternal mice to investigate the impacts on mother and offspring and illustrate the mechanism from multiple perspectives. Pregnant mice were administered with different doses of DEHP, respectively. Metagenomic sequencing used fecal and transcriptome sequencing using placentas and livers from offspring have been performed, respectively. The results of the histopathology perspective demonstrated that DEHP exposure could disrupt the function of islets impact placentas and fetus development for maternal mice, and cause the disorder of glucose and lipid metabolism for immature offspring mice, resulting in hyperglycemia. The results of the metagenome of gut microbial communities indicated that the dysbiosis of gut microbiota in mother and offspring mice and the dominant phyla transformed through vertical transmission. Transcriptome analysis found DEHP exposure induced mutations of Ahcy and Gstp3, which can damage liver cells and affect the metabolism of the host. DEHP exposure harms pregnant mice and offspring by affecting gene expression and altering metabolism. Our results suggested that exposure of pregnant mice to DEHP during pregnancy and lactation increased the risk of metabolic disorders by altering key genes in liver and gut microbiota, and these results provided new insights into the potential long-term harms of DEHP.


Asunto(s)
Dietilhexil Ftalato , Metabolismo Energético , Hiperglucemia , Exposición Materna , Femenino , Animales , Embarazo , Dietilhexil Ftalato/toxicidad , Ratones , Hiperglucemia/inducido químicamente , Metabolismo Energético/efectos de los fármacos , Exposición Materna/efectos adversos , Disruptores Endocrinos/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Microbioma Gastrointestinal/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Placenta/efectos de los fármacos , Hígado/efectos de los fármacos
11.
Sci Total Environ ; 917: 170540, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38301795

RESUMEN

Zero-valent iron (ZVI) reduction represents a promising methodology for water remediation, but its broad application is limited by two critical challenges (i.e., aggregation and passivation). Here, we report a hybrid strategy of photochemical-promoted ZVI reduction with high efficiency and reduction capacity for removing coexisting refractory pollutants in water. A composite material with Pd/Fe bimetallic nanoparticles supported onto semiconducting metal oxide (Pd/Fe@WO3-GO) was prepared and subsequently used as the model catalyst. By using the developed strategy with visible light as light source, this catalyst showed a remarkable catalytic performance for simultaneously eliminating 4-chlorophenol (4-CP) and Cr(VI), with dehalogenation rate as high as 0.43 min-1, outperforming the reported ZVI-based catalysts. A synergistic interaction of photocatalysis and ZVI reduction occurred in this strategy, where the interfacial electron transfer on particles surface were greatly strengthened with light irradiation. The activation was attributed to the dual functions of semiconducting material as support to disperse Pd/Fe nanoparticles and as (photoexcited) electron donor to directly trigger reduction reactions and/or indirectly inhibit the formation of oxides passivation layer. Both direct electron transfer and H*-mediated indirect electron transfer mechanisms were confirmed to participate in the reduction of pollutants, while the later was quantitatively demonstrated as the predominant reaction route. Importantly, this strategy showed a wide pH applicability, long-term durability and excellent catalytic performance in different real-water systems. This work provides new insights into ZVI reduction and advances its applications for the removal of combined organic and inorganic pollutants. The developed photochemical-promoted ZVI reduction strategy holds a great potential for practical applications.

12.
Molecules ; 29(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38398558

RESUMEN

Millettia speciosa Champ. (MSCP) enjoys widespread recognition for its culinary and medicinal attributes. Despite the extensive history of MSCP cultivation, the disparities in quality and bioactivity between wild and cultivated varieties have remained unexplored. In this study, 20 wild and cultivated MSCP samples were collected from different regions in China. We embarked on a comprehensive investigation of the chemical constituents found in both wild and cultivated MSCP utilizing UHPLC-Q-Exactive Orbitrap-MS technology and multivariate analysis such as principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). In total, 62 chemical components were unequivocally identified or tentatively characterized. Via the multivariate statistical analysis, we successfully pinpointed nine compounds with the potential to serve as chemical markers, enabling the differentiation between wild and cultivated MSCP varieties. Moreover, both genotypes exhibited substantial antioxidant and anti-fatigue properties. The bioactivities of wild MSCP were marginally higher when compared to their cultivated counterparts. This study illuminates the impressive antioxidant and anti-fatigue potential present in both wild and cultivated MSCP genotypes, further augmenting the allure of this species and opening new avenues for the economic valorization of MSCP. Hence, this study provides a valuable method for the identification and quality control of MSCP and a method in chemistry and pharmacology to assess an alternative possibility for cultivated MSCP.


Asunto(s)
Millettia , Cromatografía Líquida de Alta Presión/métodos , Antioxidantes/farmacología , Análisis Multivariante , Control de Calidad
13.
Environ Res ; 248: 118321, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38307186

RESUMEN

BACKGROUND: Metalloestrogens are metals and metalloid elements with estrogenic activity found everywhere. Their impact on human health is becoming more apparent as human activities increase. OBJECTIVE: Our aim is to conduct a comprehensive systematic review and meta-analysis of observational studies exploring the correlation between metalloestrogens (specifically As, Sb, Cr, Cd, Cu, Se, Hg) and Gestational Diabetes Mellitus (GDM). METHODS: PubMed, Web of Science, and Embase were searched to examine the link between metalloestrogens (As, Sb, Cr, Cd, Cu, Se, and Hg) and GDM until December 2023. Risk estimates were derived using random effects models. Subgroup analyses were conducted based on study countries, exposure sample, exposure assessment method, and detection methods. Sensitivity analyses and adjustments for publication bias were carried out to assess the strength of the findings. RESULTS: Out of the 389 articles identified initially, 350 met our criteria and 33 were included in the meta-analysis, involving 141,175 subjects (9450 cases, 131,725 controls). Arsenic, antimony, and copper exposure exhibited a potential increase in GDM risk to some extent (As: OR = 1.28, 95 % CI [1.08, 1.52]; Sb: OR = 1.73, 95 % CI [1.13, 2.65]; Cu: OR = 1.29, 95 % CI [1.02, 1.63]), although there is a high degree of heterogeneity (As: Q = 52.93, p < 0.05, I2 = 64.1 %; Sb: Q = 31.40, p < 0.05, I2 = 80.9 %; Cu: Q = 21.14, p < 0.05, I2 = 71.6 %). Conversely, selenium, cadmium, chromium, and mercury exposure did not exhibit any association with the risk of GDM in our study. DISCUSSION: Our research indicates that the existence of harmful metalloestrogens in the surroundings has a notable effect on the likelihood of GDM. Hence, we stress the significance of environmental elements in the development of GDM and the pressing need for relevant policies and measures.


Asunto(s)
Diabetes Gestacional , Humanos , Diabetes Gestacional/epidemiología , Diabetes Gestacional/inducido químicamente , Embarazo , Femenino , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales
14.
Plant Dis ; 2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38105447

RESUMEN

Cowpea (Vigna unguiculata L.) is a legume consumed as a high-quality plant protein source in many parts of the world. In August 2023, it was observed that a plant disease affected cowpea growth in Yiyang (28.34°N, 112.55°E), China. The average disease incidence was 10%, resulting in 8.5% economic losses in approximately 3,000 m2. The symptoms initially appeared as brown lesions near the stem-soil interface and the lesions were colonized by white mycelia. As the disease progressed, the disease symptoms included constriction and brown staining at the base of the stem, covered with a small amount of white mycelia. Eventually, the entire plants withered and collapsed and many sclerotia were scattered on the ground around the diseased stem. Twenty samples (10 sclerotia and 10 diseased tissue fragments) were collected from symptomatic plants for causal agent isolation. Samples were disinfected with 70% ethanol for 30 s, 5% NaClO for 1 min, rinsed three times with sterile water, dried and placed on potato dextrose agar (PDA) plates at 28℃ in the dark. In total, 20 isolates were obtained by the hyphal tip method (Terrones et al. 2022) and showed a consistent phenotype of white cottony mycelia on PDA with an growth rate of 12.9 to 21.3 mm/day (n = 20). Sclerotia formed at five to eight days post inoculation, were initially whitish, turning beige and eventually dark brown. The diameter of mature sclerotia ranged from 0.89 to 2.13 mm (mean = 1.64±0.29 mm; n =50). For pathogen identification, ITS1/ITS4 (White et al. 1990) and EF1-983F/EF1-2218R (Rehner and Buckley 2005) primers were used to amplify the internal transcribed spacer regions (ITS) and translation elongation factor-1 alpha gene (TEF-1α), respectively. The sequences of all 20 isolates showed 99% to 100% similarity with Agroathelia rolfsii sequences from GenBank by BLAST analysis. The sequences of two representative strains, ID1 and ID4, were deposited in GenBank. The ITS sequences of ID1 (OR689482) and ID4 (OR689481) were >99% similar to A. rolfsii strain QJ7 (593/596 bp; MZ750983) and A. rolfsii strain Kale078 (565/568 bp; MN872304), respectively. Also, TEF-1α sequences of ID1 (OR713735) and ID4 (OR713736) were >99% similar to the sequences of A. rolfsii strain HS-Sr (1073/1073 bp; OL416131) and A. rolfsii strain MSB1-2 (1070/1075 bp; MN702790), respectively. Phylogenetic analysis based on ITS and TEF1-α sequences indicated that ID1 and ID4 clustered into the A. rolfsii clade. Based on morphology and sequence analyses, the isolates ID1 and ID4 were identified as A. rolfsii (anamorph Sclerotium rolfsii). Pathogenicity tests were conducted three times on healthy 30-day-old cowpea seedlings. Five plants were inoculated with 6-day-old mycelial discs (6 mm) of ID1 or ID4 at the base of the seedlings (n = 30) while four plants were inoculated with a sterile PDA disc as a control (n = 12). All seedlings were cultivated in a greenhouse with a temperature of 26°C to 28°C and relative humidity 60% to 80% with a 14/10 h light/dark photoperiod. Eight days later, all the fungal inoculated seedlings showed symptoms including brown necrosis and collapse of the stems, and eventual withering of the seedlings. Control plants remained asymptomatic. The causal pathogens were reisolated in PDA plates and identified by ITS sequence analysis, completing Koch's postulates. To our knowledge, this is the first report of A. rolfsii causing southern blight on cowpea in China. Early accurate diagnosis will help farmers to adopt suitable practices to control disease outbreaks and reduce losses.

15.
Environ Sci Pollut Res Int ; 30(60): 126045-126056, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38008835

RESUMEN

In the last few decades, U(VI) is a significant environmental threat. The innovative and environmentally friendly adsorbent materials for U(VI) removal were urgent. Preparation of the modified biochar from wheat straw by combined composites of MnFe2O4 nanoparticles and chitosan Schiff base (MnFe2O4@CsSB/BC) was characterized, and adsorption experiments were carried out to investigate the performance and interfacial mechanism of U(VI) removal. The results showed that MnFe2O4@CsSB/BC exhibited high adsorption capacity of U(VI) compared with BC. The adsorption process of U(VI) removal by MnFe2O4@CsSB/BC could be ascribed as pseudo-second-order model and Langmuir model. The maximum adsorption capacity of U(VI) removal by MnFe2O4@CsSB/BC reached 19.57 mg/g at pH4.0, 30 mg/L of U(VI), and 25 °C. The possible mechanism was a chemical adsorption process, and it mainly contained electrostatic attraction and surface complexation. Additionally, it also was an economic and environmental friendly adsorbent.


Asunto(s)
Quitosano , Nanopartículas , Contaminantes Químicos del Agua , Quitosano/química , Triticum , Bases de Schiff , Agua/química , Nanopartículas/química , Carbón Orgánico/química , Adsorción , Contaminantes Químicos del Agua/análisis , Cinética , Cromo/química
16.
Org Biomol Chem ; 21(44): 8918-8923, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37906112

RESUMEN

An efficient electrochemical selenocyclization strategy for the synthesis of 3-selenylindoles from 2-ethynylanilines and diselenides has been developed in simple tube- or beaker-type undivided cells under ambient conditions. Notably, these sustainable transformations are completed within a short time with low equivalents of charges, diselenides and electrolytes, exhibiting a broad substrate scope with excellent functional group compatibility. Moreover, a gram-scale electrosynthesis and late-stage functionalization of complex molecules further demonstrate the practical synthetic potential of this facile electrochemical system.

17.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37762515

RESUMEN

Organophosphorus insecticides (OPs), acting as serine phosphorylating agents in acetylcholinesterase (AChE), are highly effective neurotoxic insecticides. In our previous research, we found that six herbivorous pests and four ladybirds howed significantly higher AChE LC50 values than seven parasitoids and a predator (Epistrophe balteate), and that there was a significant correlation with the corresponding bimolecular rate constant (Ki) value. The Ki value of pests was much smaller than that of natural enemies and had a higher LC50 value.Then, we speculated that the low sensitivity of the pest AChE to OPs may be associated with its higher recovery and lower aging ability. In this work, the I50 and I90 were calculated, to determine the sensibility of AChE in ten representative species, including Plutella xylostella, Prodenia litura, Musca domestica, and Cavia porcellus, to paraoxon and malaoxon. The enzyme activities were measured at various time points, and kinetic calculations were used to obtain their spontaneous reactivation (Ks) and aging (Ka) constants, which were comprehensively compared. We conclude that the Ka and Ks of the AChE inhibited by OPs showed primarily species-specific correlations, and little correlation with the sensitivity to OPs. The differences in the AChE sensitivity to paraoxon among the ten species were much greater than in the sensitivity to malaoxon. Compared to paraoxon, malaoxon was more selective for Cavia porcellus. Coleoptera insects showed a stronger dephosphorylation ability than other insect groups. The recovery ability of phospho-AChE was stronger in mammals than in insects, which could be related to the low sensitivity of the AChE site of action to OPs. The Ka of the AChE inhibited by malaoxon was larger than that inhibited by paraoxon with the corresponding biomaterials, indicating that the OP type had a substantial relationship with the Ka of the AChE. We further discovered that, when insects were inhibited by OP, the tendency of AChE to undergo aging was greater than that of dephosphorylation. Overall, the study provides valuable information on the action mechanism of various OPs on AChE in several species, which could be used to further research into AChE and the potential dangers that organophosphates pose to animals.

18.
Nanoscale ; 15(32): 13450-13458, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37548227

RESUMEN

Dysfunction of intracellular proteins is frequently associated with various diseases, such as cancer. The exogenous proteins in cells are usually assembled with specific configurations due to physiological confinement/crowding to exhibit novel features in the protein structure, folding or conformational stability, distinguished with their behaviors in buffer solutions. Here, we synthesized exogenous proteins under confined/crowded conditions, to explore protein activity within cells. The findings suggested that the confinement and crowding effects on protein activity are heterogeneous; they showed an inhibitory effect on HRP by decreasing Km from ∼9.5- and ∼21.7-fold and Vmax from ∼6.8- and ∼20.2-fold lower than that of dilute solutions. Interestingly, the effects on Cyt C seem to be more complicated, and crowding exerts a positive effect by increasing Km ∼ 3.6-fold and Vmax ∼ 1.5-fold higher than that of dilute solutions; however, confinement exhibits a negative effect by decreasing Km ∼2.0 and Vmax ∼8.3 times. Additionally, in contrast to traditional nanoparticle-based confinement models, we synthesized a biodegradable nanoparticle to mimic the confined space, and the biggest advantage of this novel model is that the particles can be degraded and thus it can provide more intuitive observations of the properties of the target proteins under confinement and after release. Furthermore, we also evaluated protein activity in different cellular environments, indicating that the exogenous protein activity was closely related to the crowdedness of cellular environments, and the inhibition of protein activity in MDA-MB-231 cancer cells was more obvious than in HEK293 normal cells. Finally, SAXS analysis revealed the correlation between the protein conformation and the different environments. Our work will provide a unique method for precisely assessing whether the target cellular environments are native matrix in which specific exogenous protein drugs are delivered to function or whether they display a therapeutic role, which is of great significance for screening and development of new drugs.


Asunto(s)
Pliegue de Proteína , Proteínas , Humanos , Células HEK293 , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Conformación Proteica , Proteínas/química
19.
Plant Dis ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386700

RESUMEN

Pepper(Capsicum annuum L.) is the vegetable with the largest production area China (Zou and Zou 2021). In the summer of 2020 and 2021, disease symptoms were observed in C. annuum L. cv. bola in a 10-ha field in Yiyang(28.35°N, 112.56°E), Hunan province of China. The disease incidence ranged from 10% to 30%. The symptoms initially appeared as tan lesions, which were colonized by fast-growing white mycelia, at the soil line. Affected plants eventually became wilted. Wilting was accompanied by girdling of the stem at the base, and signs of the pathogen, mycelia and golden-brown colored sclerotia. The spatial distribution of the disease was either single plants or small foci of affected plants. Diseased stem sections (1.0~1.5 cm) of 20 plants from the field in 2021 with typical symptoms were surface sterilized with 75% ethanol for 30 s, followed by 60 s in 2.5% NaClO, rinsed thrice with sterile water, air dried and plated on potato dextrose agar (PDA), and incubated at 28℃ in the dark for 5 days to isolate the causative pathogen. Twenty fungal isolates with similar colony morphology were collected and purified. These isolates formed radial colonies, and abundant sclerotia were observed after 5 to 10 days of incubation at 28℃. The color of the sclerotia with a diameter of 1.39 ± 0.15 mm (1.15 to 1.60, n=50) gradually changed from white to light yellow, and finally to dark brown. The representative isolate YYBJ20 was selected for further molecular identification. The internal transcribed spacer region and elongation factor-1alpha gene were amplified using the primers, ITS1/ITS4 (White et al. 1990) and EF1-983F/EF1-2218R (Rehner and Buckley 2005), respectively. The ITS and EF1α amplicons were sequenced and deposited in GenBank with the accession numbers OQ186649 and OQ221158, respectively. Sequence analysis revealed that the ITS and EF1α sequences of the YYBJ20 isolate exhibited ≥99% of identity with the ITS (MH260413 and AB075300) and EF1α (OL416131 and MW322687) sequences of Athelia rolfsii, respectively. Phylogenetic analysis classified YYBJ20 into a common clade with different A. rolfsii strains, but different from other Athelia or Sclerotium species. For pathogenicity tests, PDA plugs (6 mm diam.) colonized by 3-day-old mycelia were inoculated into the stem bases of 30-day-old pepper seedlings (n=10). Another 10 seedlings were inoculated with noncolonized PDA plugs were used as noninoculated controls. The pepper seedlings were incubated at 28 ± 2℃ and 60 to 80 % relative humidity under a 14h-10h of light-dark cycle. After 10 days of incubation, ten YYBJ20-inoculated plants were wilted with similar symptoms to those observed in the field, while control plants remained healthy. The pathogenicity tests were repeated three times. The fungal strain re-isolated from the infected seedlings (100% re-isolation frequency) showed the same morphological and molecular traits as the original isolates from the diseased plants. No fungi were isolated from the control plants, which is consistent with the Koch's postulates. Based on the morphological and sequencing results, the causative fungus was identified as A. rolfsii (anamorph Sclerotium rolfsii). To our knowledge, this is the first report of A. rolfsii causing southern blight on pepper in China. Due to the broad host range of and serious consequences caused by A. rolfsii (Lei et al. 2021; Zhang et al. 2022; Zhu et al. 2022), this research will be beneficial to develop strategies to mitigate future losses of pepper in China.

20.
Org Lett ; 25(24): 4540-4545, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37306286

RESUMEN

In this report we describe an atom-economic, practical strategy for the synthesis of tri/tetra-substituted furans through electrochemical [3 + 2] annulation between alkynes and ß-keto compounds with ferrocene (Fc) as the catalyst. This protocol features the use of a graphite felt (GF) anode and a stainless steel (SST) cathode, mild conditions, and excellent tolerance with various alkynes and ß-keto compounds. Additionally, the application of this method is highlighted by the late-stage functionalization of complex structures and a gram-scale experiment.


Asunto(s)
Alquinos , Furanos , Estructura Molecular , Furanos/química , Alquinos/química , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA