Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hypertens Res ; 45(11): 1743-1753, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35999282

RESUMEN

Previous studies have shown that female offspring are resistant to fetal high-fat diet (HFD)-induced programming of heightened vascular contraction; however, the underlying mechanisms remain unclear. The present study tested the hypothesis that estrogen plays a key role in protecting females from fetal programming of increased vascular contraction induced by maternal HFD exposure. Pregnant rats were fed a normal diet (ND) or HFD (60% kcal from fat). Ovariectomy (OVX) and 17ß-estradiol (E2) replacement were performed on 8-week-old female offspring. Aortas were isolated from adult female offspring. Maternal HFD exposure increased angiotensin II (Ang II)-induced contractions of the aorta in adult OVX offspring, which was abrogated by E2 replacement. The AT1 receptor (AT1R) antagonist losartan (10 µM), but not the AT2 receptor (AT2R) antagonist PD123319 (10 µM), completely blocked Ang II-induced contractions in both ND and HFD offspring. In addition, HFD exposure caused a decrease in endothelium-dependent relaxations induced by acetylcholine (ACh) in adult OVX but not OVX-E2 offspring. However, it had no effect on sodium nitroprusside (SNP)-induced endothelium-independent aorta relaxation in any of the six groups. Maternal HFD feeding increased AT1R, but not AT2R, leading to an increased AT1R/AT2R ratio in HFD-exposed OVX offspring, associated with selective decreases in DNA methylation at the AT1aR promoter, which was ameliorated by E2 replacement. Our results indicated that estrogen play a key role in sex differences of maternal HFD-induced vascular dysfunction and development of hypertensive phenotype in adulthood by differently regulating vascular AT1R and AT2R gene expression through a DNA methylation mechanism.


Asunto(s)
Dieta Alta en Grasa , Estrógenos , Hipertensión , Animales , Femenino , Embarazo , Ratas , Angiotensina II/farmacología , Dieta Alta en Grasa/efectos adversos , Estrógenos/fisiología , Losartán , Fenómenos Fisiologicos Nutricionales Maternos
2.
Oncol Lett ; 21(6): 459, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33907569

RESUMEN

Numerous studies have suggested that non-coding RNAs mediate tumorigenesis via the epithelial-mesenchymal transition (EMT). However, whether the long non-coding RNA (lncRNA) HOXA transcript at the distal tip (HOTTIP) plays a role in the EMT of small cell lung cancer (SCLC) remains unclear. The results of the present study suggest that HOTTIP-knockdown may lead to a significant increase in E-cadherin expression and a decrease in vimentin (VIM) expression; these proteins are two key markers of EMT. Furthermore, a notable morphological change in SCLC cells with HOTTIP-knockdown was observed: After upregulation of microRNA (miR)-574-5p, the cells exhibited a long, fusiform morphology. Investigating these phenomena further revealed that HOTTIP may participate in EMT by binding to miR-574-5p. In addition, using bioinformatics technology and a dual luciferase reporter assay, it was found that miR-574-5p inhibited VIM expression via direct binding and interaction. In summary, the present results indicate that HOTTIP may be involved in the EMT of SCLC by binding to miR-574-5p, and that miR-574-5p may act through VIM, which is a key marker of EMT.

3.
Cell Death Dis ; 11(10): 905, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097689

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Cell Death Dis ; 11(8): 698, 2020 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-32829380

RESUMEN

ELABELA (ELA), a 32-residue hormone peptide abundantly expressed in adult kidneys, has been identified as a novel endogenous ligand for APJ/Apelin receptor. The aim of this study was to investigate the role of ELA in deoxycorticosterone acetate (DOCA)/salt-induced hypertension and further explore the underlying mechanism. In DOCA/salt-treated rats, the mRNA level of ELA greatly decreased in the renal medulla. Next, overexpression of ELA in the kidney was found to attenuate DOCA/salt-induced hypertension and renal injury, including lower blood pressure, reversed glomerular morphological damage, decreased blood urea nitrogen (BUN), and blocked the accumulation of fibrotic markers. Mechanistically, ELA overexpression inhibited renal nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and subsequent reactive oxygen species (ROS) production, thus resulted in the blockade of formation and activation of Nod-like receptor protein 3 (NLRP3) inflammasome. The inhibitory effects of ELA on Aldosterone-stimulated NADPH oxidase/ROS/NLRP3 inflammasome pathway were confirmed in the human renal tubular cells. Furthermore, our in vivo and in vitro results showed that the deficiency of the apelin receptor APJ did not influence the antihypertensive effect and blockage to NADPH oxidase/ROS/NLRP3 pathway of ELA. Moreover, in heterozygous ELA knockout mice (ELA+/-), the ELA deficiency remarkably accelerated the onset of DOCA/salt-induced hypertension. Our data demonstrate that ELA prevents DOCA/salt-induced hypertension by inhibiting NADPH oxidase/ROS/NLRP3 pathway in the kidney, which is APJ independent. Pharmacological targeting of ELA may serve as a novel therapeutic strategy for the treatment of hypertensive kidney disease.


Asunto(s)
Hipertensión/tratamiento farmacológico , Hormonas Peptídicas/metabolismo , Hormonas Peptídicas/farmacología , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , China , Desoxicorticosterona/efectos adversos , Desoxicorticosterona/farmacología , Hipertensión/metabolismo , Inflamasomas/metabolismo , Riñón/patología , Enfermedades Renales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Cloruro de Sodio/efectos adversos , Cloruro de Sodio/farmacología
6.
Nutrition ; 75-76: 110766, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32305658

RESUMEN

OBJECTIVES: Although it is known that high fructose intake causes salt-sensitive hypertension, the underlying mechanism remains unclear. The aim of this study was to determine whether chronic intake of high fructose coupled with salt (HFS) might alter the structure of the gut microbiota, which contributes to elevated blood pressure. METHODS: For 8 wk, Sprague-Dawley rats were given 20% fructose in drinking water and 4% sodium chloride in their diet to induce hypertension. A non-absorbable antibiotic vancomycin was used to modify gut microbiota. The 16 S rRNA sequencing for fecal samples was assessed and blood pressure was recorded. Enzyme-linked immunosorbent assay and quantitative polymerase chain reaction were used to examine the renin-angiotensin system in serum, urine, and the kidney. RESULTS: Compared with the control group, HFS feeding resulted in gut dysbiosis by altering the diversity and richness of gut microbiota and decreased the ratio of Firmicutes to Bacteroidetes. Vancomycin reshaped dramatically the HFS-induced dysbiosis. And vancomycin (van) attenuated HFS-increased blood pressure (HFS: 121.3 ± 2.8 mm Hg; HFS-van: 111.1 ± 1.7 mm Hg) and heart rate (HFS: 360.5 ± 9.0 bpm; HFS-van: 318.7 ± 5.6 bpm) as well as the content of angiotensinogen, renin, and angiotensin II in the urine and the angiotensinogen mRNA level in renal cortical tissues. However, HFS-increased triacylglycerol, renin, and angiotensin II in serum were not decreased by vancomycin. CONCLUSION: The present results demonstrated that gut dysbiosis develops after chronic fructose plus salt intake and contributes to the increase of blood pressure and the activation of the intrarenal renin-angiotensin system. Therefore, targeting gut microbiota provides a helpful therapy method to improve HFS-induced hypertension.


Asunto(s)
Hipertensión , Cloruro de Sodio Dietético , Animales , Presión Sanguínea , Disbiosis/inducido químicamente , Disbiosis/metabolismo , Fructosa/efectos adversos , Hipertensión/inducido químicamente , Riñón/metabolismo , Ratas , Ratas Sprague-Dawley , Sistema Renina-Angiotensina , Cloruro de Sodio/metabolismo , Cloruro de Sodio Dietético/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...