Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Signal Transduct Target Ther ; 9(1): 96, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38653754

RESUMEN

The translocation of YAP from the cytoplasm to the nucleus is critical for its activation and plays a key role in tumor progression. However, the precise molecular mechanisms governing the nuclear import of YAP are not fully understood. In this study, we have uncovered a crucial role of SOX9 in the activation of YAP. SOX9 promotes the nuclear translocation of YAP by direct interaction. Importantly, we have identified that the binding between Asp-125 of SOX9 and Arg-124 of YAP is essential for SOX9-YAP interaction and subsequent nuclear entry of YAP. Additionally, we have discovered a novel asymmetrical dimethylation of YAP at Arg-124 (YAP-R124me2a) catalyzed by PRMT1. YAP-R124me2a enhances the interaction between YAP and SOX9 and is associated with poor prognosis in multiple cancers. Furthermore, we disrupted the interaction between SOX9 and YAP using a competitive peptide, S-A1, which mimics an α-helix of SOX9 containing Asp-125. S-A1 significantly inhibits YAP nuclear translocation and effectively suppresses tumor growth. This study provides the first evidence of SOX9 as a pivotal regulator driving YAP nuclear translocation and presents a potential therapeutic strategy for YAP-driven human cancers by targeting SOX9-YAP interaction.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Núcleo Celular , Factor de Transcripción SOX9 , Factores de Transcripción , Proteínas Señalizadoras YAP , Humanos , Proteínas Señalizadoras YAP/genética , Proteínas Señalizadoras YAP/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Transporte Activo de Núcleo Celular/genética , Ratones , Línea Celular Tumoral , Animales , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
2.
Clin Transl Oncol ; 25(7): 2250-2264, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36820953

RESUMEN

BACKGROUND: Pancreatic adenocarcinoma (PAAD) is a highly aggressive and malignant cancer type with the highest mortality rate of all major cancers. However, the molecular and tumor immune escape mechanism underlying pancreatic cancer remains largely unclear. α-enolase (ENO1) is a glycolytic enzyme reported to overexpress in a variety of cancer types. This study was undertaken to investigate the functional role and therapeutic potential of ENO1 in pancreatic cancer. METHODS: We examined the expression levels of ENO1 across a broad spectrum of cancer types from the TCGA database. ENO1-knockout (ENO1-KO) through CRISPR/CAS9 technology in a mouse pancreatic cancer cell line (PAN02) was used to analyze the role of ENO1 on proliferation and colony formation. Flow cytometry and RT-PCR were also applied to analyze T lymphocytes and relevant cytokines. RESULTS: In the present study, we identified that ENO1 promoted pancreatic cancer cell proliferation. Our bioinformatics data indicated that ENO1 was significantly overexpressed in pancreatic cancer cell lines and tissues. Survival analyses revealed that ENO1 overexpression implicated poor survival of PAAD patients. Knockout of ENO1 expression repressed the ability of proliferation and colony formation in PAN02. In addition, ENO1-KO significantly decreased tumor growth in mouse models. Further flow cytometry and RT-PCR analysis revealed that ENO1-KO modulates the tumor microenvironment (TME), especially in suppressed Treg cells and inducing anti-tumor cytokine responses. CONCLUSIONS: Taken together, our data showed that ENO1 was an oncogenic biomarker and might serve as a promising target for immunotherapy of pancreatic cancer.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Animales , Ratones , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Terapia de Inmunosupresión , Ratones Noqueados , Neoplasias Pancreáticas/patología , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
3.
Mol Ther Oncolytics ; 24: 288-298, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35434271

RESUMEN

α-Enolase (ENO1), also known as 2-phospho-D-glycerate hydrolase, is a glycolytic enzyme that catalyzes the conversion of 2-phosphoglyceric acid to phosphoenolpyruvic acid during glycolysis. It is a multifunctional oncoprotein that is present both in cell surface and cytoplasm, contributing to hit seven out of ten "hallmarks of cancer." ENO1's glycolytic function deregulates cellular energetic, sustains tumor proliferation, and inhibits cancer cell apoptosis. Moreover, ENO1 evades growth suppressors and helps tumors to avoid immune destruction. Besides, ENO1 "moonlights" on the cell surface and acts as a plasminogen receptor, promoting cancer invasion and metastasis by inducing angiogenesis. Overexpression of ENO1 on a myriad of cancer types together with its localization on the tumor surface makes it a great prognostic and diagnostic cancer biomarker as well as an accessible oncotherapeutic target. This review summarizes the up-to-date knowledge about the relationship between ENO1 and cancer, examines ENO1's potential as a cancer biomarker, and discusses ENO1's role in novel onco-immunotherapeutic strategies.

4.
Eur J Pharmacol ; 906: 174217, 2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34087223

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common cancers and is associated with high morbidity and mortality rates. Recent research indicated that imatinib, a selective tyrosine kinase inhibitor, suppressed the growth of hepatocellular carcinoma. However, the effect of imatinib on HCC and its mechanism remain under investigated. In this study, we demonstrated that imatinib inhibited the proliferation, migration and invasion of HCC cells in vitro and exerted antitumour effects on HCC xenografts in mice in vivo. Imatinib treatment decreased the phosphorylation of AKT and increased the levels of both p62 (protein sequestosome 1) and LC3 (microtubule-associated protein 1A/1B-light chain 3) in HCC cells and HCC xenografts. Scanning confocal microscopy analysis with a mRFP-GFP-LC3 reporter and transmission electron microscopy analysis revealed that imatinib suppressed the autophagic flux by obstructing the formation of autolysosomes. Moreover, imatinib reversed the autophagy induced by sorafenib, and combined treatment with imatinib and sorafenib exerted a synergetic effect in HCC cells compared with monotherapy. Our collective data suggested that imatinib may target HCC by acting as an inhibitor of both tyrosine kinase and autophagy; here, we propose that imatinib could be a promising therapeutic agent for HCC in the clinic.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Mesilato de Imatinib/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Autofagia/efectos de los fármacos , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Mesilato de Imatinib/uso terapéutico , Neoplasias Hepáticas/patología , Masculino , Ratones , Invasividad Neoplásica/prevención & control , Sorafenib/farmacología , Sorafenib/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Front Pharmacol ; 11: 605967, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33603666

RESUMEN

Background and Aims: It's reported that bone morphogenetic protein 9 (BMP9) played an important role in lipid and glucose metabolism, but the role of BMP9 in nonalcoholic fatty liver disease (NAFLD) is unclear. Here, we evaluated the therapeutic efficacy of recombined BMP9 in NAFLD mice and investigated the potential mechanism. Methods: The effects of recombinant BMP9 on NAFLD were assessed in HFD-induced NAFLD mice. C57BL/6 mice were administrated with high-fat diet (HFD) for 12 weeks. In the last 4 weeks, mice were treated with PBS or recombined BMP9 once daily. Insulin sensitivity was evaluated by glucose tolerance test (GTT) and insulin tolerance test (ITT) at the end of the 12th week. Then NAFLD related indicators were assessed by a variety of biological methods, including histology, western blotting, real-time PCR, RNA-seq and assay for transposase-accessible chromatin using sequencing (ATAC-seq) analyses. Results: BMP9 reduced obesity, improved glucose metabolism, alleviated hepatic steatosis and decreased liver macrophages infiltration in HFD mice. RNA-seq showed that Cers6, Cidea, Fabp4 involved in lipid and glucose metabolism and Fos, Ccl2, Tlr1 involved in inflammatory response downregulated significantly after BMP9 treatment in HFD mouse liver. ATAC-seq showed that chromatin accessibility on promoters of Cers6, Fabp4, Ccl2 and Fos decreased after BMP9 treatment in HFD mouse liver. KEGG pathway analysis of dysregulated genes in RNA-seq and integration of RNA-seq and ATAC-seq showed that TNF signaling pathway and Toll-like receptor signaling pathway decreased in BMP9 treated HFD mouse liver. Conclusion: Our data revealed that BMP9 might alleviate NAFLD via improving glucose and lipid metabolism, decreasing inflammatory response and reshaping chromatin accessibility in HFD mouse liver. BMP9 downregulate genes related to lipid metabolism, glucose metabolism and inflammation expression, at least partially via decreasing promoter chromatin accessibility of Cers6, Fabp4, Fos and Tlr1. BMP9 may also reduce the expression of liver Ccl2, thereby changing the number or composition of liver macrophages, and ultimately reducing liver inflammation. The effect of BMP9 on NAFLD might be all-round, and not limit to lipid and glucose metabolism. Therefore, the underlying mechanism needs to be studied in detail further.

6.
Gut ; 69(7): 1309-1321, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31727683

RESUMEN

OBJECTIVE: Autophagy participates in the progression of hepatocellular carcinoma (HCC) and the resistance of HCC cells to sorafenib. We investigated the feasibility of sensitising HCC cells to sorafenib by modulating miR-541-initiated microRNA-autophagy axis. DESIGN: Gain- and loss-of-function assays were performed to evaluate the effects of miR-541 on the malignant properties and autophagy of human HCC cells. Autophagy was quantified by western blotting of LC3, transmission electron microscopy analyses and confocal microscopy scanning of mRFP-GFP-LC3 reporter construct. Luciferase reporter assays were conducted to confirm the targets of miR-541. HCC xenograft tumours were established to analyse the role of miR-541 in sorafenib-induced lethality. RESULTS: The expression of miR-541 was downregulated in human HCC tissues and was associated with malignant clinicopathologic phenotypes, recurrence and survival of patients with HCC. miR-541 inhibited the growth, metastasis and autophagy of HCC cells both in vitro and in vivo. Prediction software and luciferase reporter assays identified autophagy-related gene 2A (ATG2A) and Ras-related protein Rab-1B (RAB1B) as the direct targets of miR-541. Consistent with the effects of the miR-541 mimic, inhibition of ATG2A or RAB1B suppressed the malignant phenotypes and autophagy of HCC cells. Furthermore, siATG2A and siRAB1B partially reversed the enhancement of the malignant properties and autophagy in HCC cells mediated by the miR-541 inhibitor. More interestingly, higher miR-541 expression predicted a better response to sorafenib treatment, and the combination of miR-541 and sorafenib further suppressed the growth of HCC cells in vivo compared with the single treatment. CONCLUSIONS: Dysregulation of miR-541-ATG2A/RAB1B axis plays a critical role in patients' responses to sorafenib treatment. Manipulation of this axis might benefit survival of patients with HCC, especially in the context of the highly pursued strategies to eliminate drug resistance.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , MicroARNs/metabolismo , Sorafenib/farmacología , Animales , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Estudios de Factibilidad , Humanos , Neoplasias Hepáticas/patología , Ratones , Recurrencia Local de Neoplasia , Fenotipo
7.
Front Pharmacol ; 10: 1321, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31736766

RESUMEN

Liver fibrosis is a reversible process of extracellular matrix deposition or scar formation after liver injury. Intestinal damage and bacterial dysbiosis are important concomitant intestinal changes in liver fibrosis and may in turn accelerate the progression of liver fibrosis through the gut-liver axis. RhoA, an important factor in the regulation of the cytoskeleton, plays an important role in intestinal damage. We investigated the effects of ursolic acid (UA), a traditional Chinese medicine with anti-fibrotic effects, on intestinal damage and bacterial disorder through the RhoA pathway. UA treatment reduced intestinal damage by inhibiting the inflammatory factor TNF-α and increasing the expression of tight junction proteins and antibacterial peptides to protect the intestinal barrier. Moreover, the corrective effect of UA on bacterial dysbiosis was also confirmed by sequencing of the 16S rRNA gene. Potential beneficial bacteria, such as the phylum Firmicutes and the genera Lactobacillus and Bifidobacterium, were increased in the UA group compared to the CCl4 group. In liver fibrosis mice with RhoA inhibition via injection of adeno-associated virus, the liver fibrosis, intestinal damage, and flora disturbances were improved. Moreover, UA inhibited the expression of RhoA pathway components. In conclusion, UA improves intestinal damage and bacterial dysbiosis partly via the RhoA pathway. This may be a potential mechanism by which UA exerts its anti-fibrotic effects and provides effective theoretical support for the future use of UA in clinical practice.

8.
Mol Med Rep ; 17(5): 6768-6776, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29512733

RESUMEN

The exact molecular mechanism of 5-fluorouracil (5-FU) in human gastric cancer cells remains to be elucidated. Cultured BGC­823 human gastric carcinoma and AGS cell lines were treated with 5­FU. Autophagosome formation was investigated through multiple approaches, including the quantification of green fluorescent protein­microtubule­associated protein 1A/1B­light chain 3 (LC3) puncta, LC3 conversion and electron microscopy observations. Additionally, autophagy was inhibited using 3­methyladenine (3­MA) and beclin­1 ablation, to determine its role in 5­FU­mediated cell death. In addition, the present study assessed alterations in sirtuin expression following 5­FU treatment with reverse transcription­quantitative polymerase chain reaction. 5­FU treatment induced apoptosis and inhibited proliferation in BGC­823 and AGS gastric cancer cells. It is of note that the 5­FU treatment only promoted autophagy in BGC­823 cells. Additionally, inhibition of autophagy by either 3­MA or beclin­1 ablation increased 5­FU­induced cell death in BGC­823 cells. The present study quantified changes in sirtuin (SIRT1, SIRT3, SIRT5, and SIRT6) expression following 5­FU treatment and using a specific inhibitor, sirtinol, the present study investigated their involvement in 5­FU­mediated autophagy. Autophagy inhibition through manipulation of sirtuin proteins may increase the therapeutic efficacy of the 5­FU chemotherapeutic drug against gastric carcinoma.


Asunto(s)
Autofagosomas/metabolismo , Autofagia/efectos de los fármacos , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas de Neoplasias/biosíntesis , Neoplasias Gástricas/tratamiento farmacológico , Autofagosomas/patología , Línea Celular Tumoral , Humanos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología
9.
Exp Ther Med ; 14(4): 3577-3582, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29042951

RESUMEN

Activation of quiescent hepatic stellate cells (q-HSCs) and their transformation to myofibroblasts (MFBs) is a key event in liver fibrosis. Hedgehog (Hh) signaling stimulates q-HSCs to differentiate into MFBs, and NADPH oxidase (NOX) may be involved in regulating Hh signaling. The author's preliminary study demonstrated that ursolic acid (UA) selectively induces apoptosis in activated HSCs and inhibits their proliferation in vitro via negative regulation of NOX activity and expression. However, the effect of UA on q-HSCs remains to be elucidated. The present study aimed to investigate the effect of UA on q-HSC activation and HSC transformation and to observe alterations in the NOX and Hh signaling pathways during q-HSC activation. q-HSC were isolated from adult male Sprague-Dawley rats. Following culture for 3 days, the cells were treated with or without transforming growth factor-ß1 (TGF-ß1; 5 µg/l); intervention groups were pretreated with UA (40 µM) or diphenyleneiodonium chloride (DPI; 10 µM) for 30 min prior to addition of TGF-ß1. mRNA and protein expression of NOX and Hh signaling components and markers of q-HSC activation were examined by western blotting and reverse transcription-polymerase chain reaction. TGF-ß1 induced activation of q-HSCs, with increased expression of α-smooth muscle actin (α-SMA) and type I collagen. In addition, expression of NOX subunits (gp91phox, p67phox, p22phox, and Rac1) and Hh signaling components, including sonic Hh, sterol-4-alpha-methyl oxidase, and Gli family zinc finger 2, were upregulated in activated HSCs. Pretreatment of q-HSCs with UA or DPI prior to TGF-ß1 significantly downregulated expression of NOX subunits and Hh signaling components and additionally inhibited expression of α-SMA and type I collagen, thereby preventing transformation to MFBs. UA inhibited TGF-ß1-induced activation of q-HSCs and their transformation by inhibiting expression of NOX subunits and the downstream Hh pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...