Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 992755, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36352884

RESUMEN

Drought is the abiotic factor that adversely affects plant growth, development survival, and crop productivity, posing a substantial threat to sustainable agriculture worldwide, especially in warm and dry areas. However, the extent of damage depends upon the crop growth stage, severity and frequency of the stress. In general, the reproductive growth phase is more sensitive to stresses causing a substantial loss in crop productivity. Saccharum spontaneum (L.) is the most variable wild relative of sugarcane with potential for use in sugarcane crop improvement programs. In the present study addresses the transcriptomic analysis of drought stress imposed by polyethylene glycol-6000 (PED-6000; w/v- 25%) on the root tip tissues of S. spontaneum GX83-10. The analysis of microarrays of drought-stressed roots was performed at 0 (CK), 2 (T2), 4 (T4), 8 (T8) and 24 h (T24). The analyzed data were compared with the gene function annotations of four major databases, such as Nr, KOG/COG, Swiss-Prot, and KEGG, and a total of 62,988 single-gene information was obtained. The differently expressed genes of 56237 (T4), 59319 (T8), and 58583 (T24), among which CK obtained the most significant number of expressed genes (35920) as compared to T24, with a total of 53683 trend genes. Gene ontology (GO) and KEGG analysis were performed on the 6 important trends, and a total of 598 significant GO IDs and 42 significantly enriched metabolic pathways. Furthermore, these findings also aid in the selection of novel genes and promoters that can be used to potentially produce crop plants with enhanced stress resistance efficiency for sustainable agriculture.

2.
Cancer Cell Int ; 19: 126, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31110467

RESUMEN

BACKGROUND: Ubinuclein-2 (UBN2) is a nuclear protein that interacts with many transcription factors. The molecular role and mechanism of UBN2 in the development and progression of cancers, including colorectal cancer (CRC), is not well understood. The current study explored the role of UBN2 in the development and progression CRC. METHODS: Oncomine network and The Cancer Genome Atlas (TCGA) database were downloaded and Gene Set Enrichment Analysis (GSEA) was performed to compare the UBN2's expression between normal and tumor tissues, as well as the potential correlation of UBN2 expression with signaling pathways. Immunohistochemistry (IHC), qRT-PCR and Western blotting were performed to determine the expression of UBN2 in CRC tissues or cell lines. In vitro proliferation and invasion assays, and orthotopic mouse metastatic model were used to analyze the effect of UBN2 on the development and progression of CRC. RESULTS: The analysis of UBN2 expression using Oncomine network showed that UBN2 was upregulated in CRC tissues compared to matched adjacent normal intestinal epithelial tissues. IHC, qRT-PCR and Western blotting confirmed that UBN2 expression is higher in CRC tissues compared with matched adjacent normal intestinal epithelial tissues. In addition, analyses of TCGA data revealed that high UBN2 expression was associated with advanced stages of lymph node metastasis, distant metastasis, and short survival time in CRC patients. IHC showed that high UBN2 expression is correlated with advanced stages of CRC. Moreover, UBN2 is highly expressed in the liver metastatic lesions. Furthermore, knockdown of UBN2 inhibited the growth, invasiveness and metastasis of CRC cells via regulation of the Ras/MAPK signaling pathway. CONCLUSION: The current study demonstrates that UBN2 promotes tumor progression in CRC. UBN2 may be used as a promising biomarker for predicting the prognosis of CRC patients.

3.
Org Biomol Chem ; 11(30): 5023-33, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23801247

RESUMEN

Photoreactions of isoquinoline-1,3,4-triones and oxazoles with different substituents were found to give different chemo-, regio- and diastereoselectivities. The substituent at the C5 on the oxazole ring showed great influence on the chemoselectivity of the photoreaction as well as on the transformation of the photocycloadducts. The 2-methyl-5-methoxyoxazoles reacted with isoquinoline-1,3,4-triones rapidly and gave spirooxetanes with high regio- and diastereo-selectivity. Diastereoselectivity in the reaction of 2-phenyl-5-methoxyoxazoles with isoquinoline-1,3,4-triones was relevant to the substituent on the 4-position on the oxazole ring. Replacement of the 5-methoxy group with 5-methyl or 5-phenyl resulted in significant decrease on the reactivity of the oxazole as well as change on the diastereoselectivity in photocycloaddition with isoquinoline-1,3,4-triones. Acid-mediated transformations of the photocycloadduct spirooxetanes was found to give different type of products including ß-hydroxy-α-aminocarbonyl compounds and spiroisoquinolineoxazolines under different reaction conditions. Substituents on the spirooxetanes as well as the type and amount of acid used in the reaction played important roles in determining the type and diastereoselectivity of the products in the transformations.


Asunto(s)
Isoquinolinas/química , Oxazoles/química , Ciclización , Modelos Moleculares , Estructura Molecular , Procesos Fotoquímicos , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...