Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Lett ; 589: 216836, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38556105

RESUMEN

Despite the approval of immune checkpoint blockade (ICB) therapy for various tumor types, its effectiveness is limited to only approximately 15% of patients with microsatellite instability-high (MSI-H) or mismatch repair deficiency (dMMR) colorectal cancer (CRC). Approximately 80%-85% of CRC patients have a microsatellite stability (MSS) phenotype, which features a rare T-cell infiltration. Thus, elucidating the mechanisms underlying resistance to ICB in patients with MSS CRC is imperative. In this study, we demonstrate that ubiquitin-specific peptidase 4 (USP4) is upregulated in MSS CRC tumors and negatively regulates the immune response against tumors in CRC. Additionally, USP4 represses the cellular interferon (IFN) response and antigen presentation and impairs PRR signaling-mediated cell death. Mechanistically, USP4 impedes the nuclear localization of interferon regulator Factor 3 (IRF3) by deubiquitinating the K63-polyubiquitin chain of TRAF6 and IRF3. Knockdown of USP4 enhances the infiltration of T cells in CRC tumors and overcomes ICB resistance in an MC38 syngeneic mouse model. Moreover, published datasets revealed that patients showing higher USP4 expression exhibited decreased responsiveness to anti-PD-L1 therapy. These findings highlight an essential role of USP4 in the suppression of antitumor immunity in CRC.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Colorrectales , Interferones , Síndromes Neoplásicos Hereditarios , Animales , Ratones , Humanos , Interferones/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Inestabilidad de Microsatélites , Enzimas Desubicuitinizantes/genética , Factor 3 Regulador del Interferón/genética , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
2.
Brain Imaging Behav ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38261218

RESUMEN

Semantic processing, a core of language comprehension, involves the activation of brain regions dispersed extensively across the frontal, temporal, and parietal cortices that compose the semantic network. To comprehend the functional structure of this semantic network and how it prepares for semantic processing, we investigated its intrinsic functional connectivity (FC) and the relation between this pattern and semantic processing ability in a large sample from the Human Connectome Project (HCP) dataset. We first defined a well-studied brain network for semantic processing, and then we characterized the within-network connectivity (WNC) and the between-network connectivity (BNC) within this network using a voxel-based global brain connectivity (GBC) method based on resting-state functional magnetic resonance imaging (fMRI). The results showed that 97.73% of the voxels in the semantic network displayed considerably greater WNC than BNC, demonstrating that the semantic network is a fairly encapsulated network. Moreover, multiple connector hubs in the semantic network were identified after applying the criterion of WNC > 1 SD above the mean WNC of the semantic network. More importantly, three of these connector hubs (i.e., the left anterior temporal lobe, angular gyrus, and orbital part of the inferior frontal gyrus) were reliably associated with semantic processing ability. Our findings suggest that the three identified regions use WNC as the central mechanism for supporting semantic processing and that task-independent spontaneous connectivity in the semantic network is essential for semantic processing.

3.
Nat Commun ; 14(1): 8141, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38065939

RESUMEN

Gastric cancer (GC) is a heterogeneous disease, threatening millions of lives worldwide, yet the functional roles of long non-coding RNAs (lncRNAs) in different GC subtypes remain poorly characterized. Microsatellite stable (MSS)/epithelial-mesenchymal transition (EMT) GC is the most aggressive subtype associated with a poor prognosis. Here, we apply integrated network analysis to uncover lncRNA heterogeneity between GC subtypes, and identify MIR200CHG as a master regulator mediating EMT specifically in MSS/EMT GC. The expression of MIR200CHG is silenced in MSS/EMT GC by promoter hypermethylation, associated with poor prognosis. MIR200CHG reverses the mesenchymal identity of GC cells in vitro and inhibits metastasis in vivo. Mechanistically, MIR200CHG not only facilitates the biogenesis of its intronic miRNAs miR-200c and miR-141, but also protects miR-200c from target-directed miRNA degradation (TDMD) through direct binding to miR-200c. Our studies reveal a landscape of a subtype-specific lncRNA regulatory network, providing clinically relevant biological insights towards MSS/EMT GC.


Asunto(s)
Transición Epitelial-Mesenquimal , MicroARNs , ARN Largo no Codificante , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Proliferación Celular , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Gástricas/patología , Estabilidad del ARN
4.
Front Genet ; 14: 1105368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37205121

RESUMEN

Aims: A growing body of evidence demonstrates that Stress granules (SGs), a non-membrane cytoplasmic compartments, are important to colorectal development and chemoresistance. However, the clinical and pathological significance of SGs in colorectal cancer (CRC) patients is unclear. The aim of this study is to propose a new prognostic model related to SGs for CRC on the basis of transcriptional expression. Main methods: Differentially expressed SGs-related genes (DESGGs) were identified in CRC patients from TCGA dataset by limma R package. The univariate and Multivariate Cox regression model was used to construct a SGs-related prognostic prediction gene signature (SGPPGS). The CIBERSORT algorithm was used to assess cellular immune components between the two different risk groups. The mRNA expression levels of the predictive signature from 3 partial response (PR) and 6 stable disease (SD) or progress disease (PD) after neoadjuvant therapy CRC patients' specimen were examined. Key findings: By screening and identification, SGPPGS comprised of four genes (CPT2, NRG1, GAP43, and CDKN2A) from DESGGs is established. Furthermore, we find that the risk score of SGPPGS is an independent prognostic factor to overall survival. Notably, the abundance of immune response inhibitory components in tumor tissues is upregulated in the group with a high-risk score of SGPPGS. Importantly, the risk score of SGPPGS is associated with the chemotherapy response in metastatic colorectal cancer. Significance: This study reveals the association between SGs related genes and CRC prognosis and provides a novel SGs related gene signature for CRC prognosis prediction.

5.
Cancer Cell Int ; 23(1): 27, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36793075

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) play important roles in the biology of colorectal cancer (CRC). There are several lncRNAs associated with invasion and metastasis have been characterized in CRC. However, studies focusing on the precise molecular mechanisms by which lncRNAs function in lymph node (LN) metastasis in CRC are still limited. METHODS: In this study, by analyzing TCGA dataset, we identified that AC244100.2 (termed CCL14-AS), a novel lncRNA enriched in the cytoplasm, was negatively correlated with LN metastasis and unfavorable prognosis of CRC. In situ hybridization was used to examine CCL14-AS expression in clinical CRC tissues. Various functional experiments including migration assay and wound-healing assay were used to investigate the effects of CCL14-AS on CRC cells migration. The nude mice popliteal lymph node metastasis model assay further confirmed the effects of CCL14-AS in vivo. RESULTS: CCL14-AS expression was significantly downregulated in CRC tissues compared to adjacent normal tissues. In addition, low CCL14-AS expression was correlated with advanced T classification, LN metastasis, distant metastasis, and shorter disease-free survival of CRC patients. Functionally, CCL14-AS overexpression inhibited the invasiveness of CRC cells in vitro and LN metastasis in nude mice. On the contrary, knockdown of CCL14-AS promoted the invasiveness and LN metastasis abilities of CRC cells. Mechanistically, CCL14-AS downregulated the expression of MEP1A via interacting with MEP1A mRNA and reduced its stability. Overexpression of MEP1A rescued the invasiveness and LN metastasis abilities in CCL14-AS-overexpressing CRC cells. Moreover, the expression levels of CCL14-AS was negatively correlated with that of MEP1A in CRC tissues. CONCLUSIONS: We identified a novel lncRNA, CCL14-AS, as a potential tumor suppressor in CRC. Our findings supported a model in which the CCL14-AS/MEP1A axis serves as critical regulator in CRC progression, suggesting a novel biomarker and therapeutic target in advanced CRC.

6.
Front Plant Sci ; 13: 992755, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36352884

RESUMEN

Drought is the abiotic factor that adversely affects plant growth, development survival, and crop productivity, posing a substantial threat to sustainable agriculture worldwide, especially in warm and dry areas. However, the extent of damage depends upon the crop growth stage, severity and frequency of the stress. In general, the reproductive growth phase is more sensitive to stresses causing a substantial loss in crop productivity. Saccharum spontaneum (L.) is the most variable wild relative of sugarcane with potential for use in sugarcane crop improvement programs. In the present study addresses the transcriptomic analysis of drought stress imposed by polyethylene glycol-6000 (PED-6000; w/v- 25%) on the root tip tissues of S. spontaneum GX83-10. The analysis of microarrays of drought-stressed roots was performed at 0 (CK), 2 (T2), 4 (T4), 8 (T8) and 24 h (T24). The analyzed data were compared with the gene function annotations of four major databases, such as Nr, KOG/COG, Swiss-Prot, and KEGG, and a total of 62,988 single-gene information was obtained. The differently expressed genes of 56237 (T4), 59319 (T8), and 58583 (T24), among which CK obtained the most significant number of expressed genes (35920) as compared to T24, with a total of 53683 trend genes. Gene ontology (GO) and KEGG analysis were performed on the 6 important trends, and a total of 598 significant GO IDs and 42 significantly enriched metabolic pathways. Furthermore, these findings also aid in the selection of novel genes and promoters that can be used to potentially produce crop plants with enhanced stress resistance efficiency for sustainable agriculture.

7.
Nat Commun ; 13(1): 5644, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163134

RESUMEN

Indoleamine 2,3 dioxygenase 1 (IDO1) is an attractive target for cancer immunotherapy. However, IDO1 inhibitors have shown disappointing therapeutic efficacy in clinical trials, mainly because of the activation of the aryl hydrocarbon receptor (AhR). Here, we show a post-transcriptional regulatory mechanism of IDO1 regulated by a proteasome-associated deubiquitinating enzyme, USP14, in colorectal cancer (CRC). Overexpression of USP14 promotes tryptophan metabolism and T-cell dysfunction by stabilizing the IDO1 protein. Knockdown of USP14 or pharmacological targeting of USP14 decreases IDO1 expression, reverses suppression of cytotoxic T cells, and increases responsiveness to anti-PD-1 in a MC38 syngeneic mouse model. Importantly, suppression of USP14 has no effects on AhR activation induced by the IDO1 inhibitor. These findings highlight a relevant role of USP14 in post-translational regulation of IDO1 and in the suppression of antitumor immunity, suggesting that inhibition of USP14 may represent a promising strategy for CRC immunotherapy.


Asunto(s)
Neoplasias Colorrectales , Receptores de Hidrocarburo de Aril , Animales , Neoplasias Colorrectales/genética , Enzimas Desubicuitinizantes , Indolamina-Pirrol 2,3,-Dioxigenasa , Ratones , Complejo de la Endopetidasa Proteasomal , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo , Ubiquitina Tiolesterasa
8.
Front Oncol ; 12: 894043, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898871

RESUMEN

Background: Forkhead box S1 (FOXS1) is a member of the forkhead box (FOX) transcriptional factor superfamily. The biological roles and underlying regulatory mechanism of FOXS1 in CRC remain unclear. Methods: Bioinformatics analysis, Western blotting, real-time PCR, and immunohistochemistry (IHC) were used to detect the expression FOXS1 in CRC. MTT assay, transwell assay, human umbilical vein endothelial cell tube formation assay, and chicken chorioallantoic membrane assay were performed to investigate the effects of FOXS1 on proliferation, invasion, and angiogenesis. Additionally, tumor formation assay and orthotopic implantation assay were used to investigate the effects of FOXS1 on tumor growth and metastasis in vivo. Furthermore, gene set enrichment analysis (GSEA) was used to analyze the correlation between FOXS1 and EMT or angiogenesis. The correlation between FOXS1 and CXCL8 expression was analyzed in clinical CRC samples using IHC. Results: The results showed that FOXS1 expression was upregulated in CRC tissues compared with adjacent normal intestine tissues. A high FOXS1 expression is positively correlated with poor survival. FOXS1 promoted the malignant behavior of CRC cancer cells in vitro, including proliferation, invasion, and angiogenesis. In addition, FOXS1 promoted tumor growth and metastasis in nude mice. Mechanistically, FOXS1 upregulated the expression of C-X-C motif chemokine ligand 8 (CXCL8) at the transcriptional level. Knockdown of CXCL8 blocked FOXS1 induced the enhancement of the EMT and angiogenesis. GSEAs in public CRC datasets revealed strong correlations between FOXS1 expression and EMT marker and angiogenesis markers. IHC showed that FOXS1 expression was positively correlated with CXCL8 expression and CD31 expression in clinical CRC samples. Conclusion: The results suggest that FOXS1 promotes angiogenesis and metastasis by upregulating CXCL8 in CRC. Interference with the FOXS1/CXCL8 axis may serve as a potential therapeutic target for the treatment of metastatic CRC.

9.
Brain Imaging Behav ; 16(4): 1695-1707, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35247162

RESUMEN

As a key area in word reading, the left ventral occipitotemporal cortex is proposed for abstract orthographic processing, and its middle part has even been labeled as the visual word form area. Because the definition of the VWFA largely varies and the reading task differs across studies, the function of the left ventral occipitotemporal cortex in word reading is continuingly debated on whether this region is specific for orthographic processing or be involved in an interactive framework. By using representational similarity analysis (RSA), this study examined information representation in the VWFA at the individual level and the modulatory effect of reading task. Twenty-four subjects were scanned while performing the explicit (i.e., the naming task) and implicit (i.e., the perceptual task) reading tasks. Activation analysis showed that the naming task elicited greater activation in regions related to phonological processing (e.g., the bilateral prefrontal cortex and temporoparietal cortex), while the perceptual task recruited greater activation in visual cortex and default mode network (e.g., the bilateral middle frontal gyrus, angular gyrus, and the right middle temporal gyrus). More importantly, RSA also showed that task modulated information representation in the bilateral anterior occipitotemporal cortex and VWFA. Specifically, ROI-based RSA revealed enhanced orthographic and phonological representations in the bilateral anterior fusiform cortex and VWFA in the naming task relative to the perceptual task. These results suggest that lexical representation in the VWFA is influenced by the demand of phonological processing, which supports the interactive account of the VWFA.


Asunto(s)
Mapeo Encefálico , Reconocimiento Visual de Modelos , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética , Reconocimiento Visual de Modelos/fisiología , Lectura , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiología
10.
J Exp Clin Cancer Res ; 40(1): 304, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34583750

RESUMEN

BACKGROUND: Tumor-associated macrophages (TAMs) are key regulators of the complex interplay between cancer and the immune microenvironment. Tumor cell-derived spondin 2 (SPON2) is an extracellular matrix glycoprotein that has complicated roles in recruitment of macrophages and neutrophils during inflammation. Overexpression of SPON2 has been shown to promote tumor cell migration in colorectal cancer (CRC). However, the mechanism by which SPON2 regulates the accumulation of TAMs in the tumor microenvironment (TME) of CRC is unknown. METHODS: Immunohistochemistry was used to examine SPON2 expression in clinical CRC tissues. In vitro migration assays, transendothelial migration assays (iTEM), and cell adhesion assays were used to investigate the effects of SPON2 on monocyte/macrophage migration. Subcutaneous tumor formation and orthotopic implantation assays were performed in C57 BL/6 mice to confirm the effects of SPON2 on TAM infiltration in tumors. RESULTS: SPON2 expression is positively correlated with M2-TAM infiltration in clinical CRC tumors and poor prognosis of CRC patients. In addition, SPON2 promotes cytoskeletal remodeling and transendothelial migration of monocytes by activating integrin ß1/PYK2 axis. SPON2 may indirectly induce M2-polarization through upregulating cytokines including IL10, CCL2 and CSF1 expression in tumor cells. Blocking M2 polarization and Macrophage depletion inhibited the SPON2-induced tumors growth and invasion. Furthermore, blocking the SPON2/integrin ß1/PYK2 axis impairs the transendothelial migration of monocytes and cancer-promoting functions of TAMs in vivo. CONCLUSIONS: Our findings demonstrate that SPON2-driven M2-TAM infiltration plays an important role during CRC tumor growth and metastasis. SPON2 may be a valuable biomarker guiding the use of macrophage-targeting strategies and a potential therapeutic target in advanced CRC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/patología , Proteínas de la Matriz Extracelular/metabolismo , Quinasa 2 de Adhesión Focal/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/secundario , Proteínas de Neoplasias/metabolismo , Macrófagos Asociados a Tumores/inmunología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Proteínas de la Matriz Extracelular/genética , Femenino , Quinasa 2 de Adhesión Focal/genética , Humanos , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas de Neoplasias/genética , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Front Microbiol ; 12: 593202, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33584608

RESUMEN

Infection with H5N6 highly pathogenic avian influenza virus caused high mortality in chickens, while ducks often appear to be asymptomatic. But, some recent H5Nx subtype viruses could cause high mortality in ducks. The variation between different species and the mechanisms by which some H5Nx viruses cause death in ducks requires investigation to identify the key processes in influenza susceptibility and pathogenesis. Here, we characterized two representative H5N6 viruses, A/Pavo cristatus/Jiangxi/JA1/2016 (JA1) and A/Anas crecca/shanghai/SH1/2016 (SH1), and compared their pathogenicity and expression profiles of immune-related genes in chickens and ducks to identify the elements of the host immune-related response that were involved in disease lethality. Results suggested that H5N6 HPAIVs had higher pathogenic and inflammatory effect in chickens than in ducks. Importantly, the TNF-α, IL-6, IFN-γ and iNOS levels were significantly higher in the lung of SH1 infected chickens compared to those of ducks. And we found higher systemic levels of IL-6 induced by JA1 in chickens than in ducks. In addition, our experiments demonstrated that JA1 was associated with greater pathogenicity in ducks were accompanied by the excessive expression of iNOS in the brain. These results are helpful to understand the relationship between the pathogenicity of H5N6 AIVs and inflammatory responses to them in chickens and ducks.

12.
Integr Zool ; 16(6): 929-938, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32652769

RESUMEN

Contracaecum species are economically important fish-borne larval nematodes with zoonotic significance. In June 2019, more than 100 piscivorous birds died in their habitats close to the Wild Duck Lake, located in Yanqing, northwest of Beijing, China. Post-mortem examination of Black Night Herons (Nycticorax) revealed the presence of numerous anisakid nematodes in the proventriculus. Recovered nematodes were identified as Contracaecum sp. based on morphological description. Phylogenetic analysis of the mitochondrial (mt) genome and the ITS gene showed that sequences of Contracaecum sp. Beijing isolates were grouped into a new individual cluster. Furthermore, the parasite was successfully isolated from fresh dead birds, feces of piscivorous birds, and fish and prevalence ranged from 8.0% to 81.8%. Consequently, our study demonstrated Contracaecum sp. infections in different sources from China, which might constitute a threat to wildlife, aquaculture, and public health.


Asunto(s)
Infecciones por Ascaridida/veterinaria , Ascaridoidea/genética , Enfermedades de las Aves/parasitología , Animales , Infecciones por Ascaridida/epidemiología , Infecciones por Ascaridida/parasitología , Enfermedades de las Aves/epidemiología , Aves , China/epidemiología , Peces/parasitología , Parasitología de Alimentos
13.
J Exp Clin Cancer Res ; 39(1): 168, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32843066

RESUMEN

BACKGROUND: cAMP responsive element binding protein 5 (CREB5) is a transcriptional activator in eukaryotic cells that can regulate gene expression. Previously, we found that CREB5 was involved in the occurrence and development of colorectal cancer (CRC) using bioinformatics analysis. However, the biological roles and underlying regulatory mechanism of CREB5 in CRC remain unclear. METHODS: Real-time PCR, western blotting, and immunohistochemistry were used to examine CREB5 expression. In vitro experiments including migration assay, wound-healing assay, chicken chorioallantoic membrane assay, and human umbilical vein endothelial cells tube formation assay were used to investigate the effects of CREB5 on CRC cell migration and tumor angiogenesis ability. Additionally, an orthotopic implantation assay was performed in nude mice to confirm the effects of CREB5 in vivo. Furthermore, gene set enrichment analysis was performed to explore the potential mechanism of CREB5 in CRC. RESULTS: We found that CREB5 expression was highly upregulated in CRC. CREB5 overexpression was positively correlated with advanced WHO stages and TNM stages and shorter survival in CRC patients. Moreover, CREB5 overexpression promoted while CREB5 silencing reduced the invasiveness and metastatic capacity of CRC cells both in vitro and in vivo. Furthermore, CREB5 directly interacted with the MET promoter and activated the hepatocyte growth factor-MET signalling pathway. Importantly, inhibition of MET reduced the invasion and metastasis of CREB5-overexpressing CRC cells, suggesting that CREB5 promotes metastasis mainly through activation of MET signalling. CONCLUSION: Our study demonstrates a crucial role for CREB5 in CRC metastasis by directly upregulating MET expression. CREB5 may be both a potential prognostic marker and a therapeutic target to effectively overcome metastasis in CRC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/patología , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/secundario , Proteínas Proto-Oncogénicas c-met/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Pronóstico , Proteínas Proto-Oncogénicas c-met/genética , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Front Vet Sci ; 7: 300, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695797

RESUMEN

Cryptosporidium spp. are important intestinal parasites that infect humans and various animals, including wildlife. Currently, few epidemiological data in wild rodents, especially in voles, are available. In the present study, a total of 678 Brandt's vole feces samples were collected from Maodeng Livestock Farm and East Ujimqin, Inner Mongolia. The overall prevalence of Cryptosporidium spp. was 18.7%. Significant differences were not found between genders but between locations and weight groups. Moreover, three known species/genotypes, C. suis, Cryptosporidium environmental sequence and muskrat genotype II, and a novel Cryptosporidium species/genotypes of Brandt's vole was identified. To the best of our knowledge, this is the first report of Cryptosporidium spp. infection in Brandt's vole worldwide. These findings imply Brandt's voles might be a potential source of human cryptosporidiosis.

15.
Zoonoses Public Health ; 67(5): 534-545, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32452163

RESUMEN

Commensal rats (Rattus spp.), which are globally distributed, harbour many pathogens responsible for significant human diseases. Despite this, we have a poor understanding of the epidemiology and genetic diversity of some recently neglected zoonotic pathogens, such as Leptospira spp., Bartonella spp. and hepatitis E virus (HEV), which constitute a major public health threat. Thus, we surveyed the occurrences, co-infection and genetic diversity of these pathogens in 129 urban rats from China. For Rattus tanezumi, the prevalences of Leptospira spp., Bartonella spp. and HEV infection were 6.67%, 0% and 46.67%, respectively. The prevalences of Leptospira spp., Bartonella spp. and HEV infection were 57.89%, 9.65% and 57.89% for Rattus norvegicus respectively. Leptospira spp. and HEV infections were more likely to occur in mature R. norvegicus. Phylogenetic analyses showed that pathogenic Leptospira interrogans and Leptospira borgpetersenii might exist. We also found that Bartonella spp. showed high similarity to Bartonella elizabethae, Bartonella rochalimae and Bartonella tribocorum, which are implicated in human disease. Dual and triple infections were both detected. Moreover, dual infections with Leptospira spp. and HEV represented the most frequent co-infection, and there was a significantly positive association between them. High genetic diversity was observed in genes segments from Leptospira, Bartonella and HEV. Our results first discover the occurrence of multiple co-infections and genetic diversity of Leptospira, Bartonella and HEV in commensal rats from China. Altogether, the present study provides an insight into evaluating the risk of rat-borne zoonoses in urban China.


Asunto(s)
Bartonella/genética , Variación Genética , Virus de la Hepatitis E/genética , Leptospira/genética , Animales , Bartonella/aislamiento & purificación , China , Ciudades , Femenino , Leptospira/aislamiento & purificación , Masculino , Filogenia , Ratas , Zoonosis/microbiología , Zoonosis/virología
16.
Cancer Cell Int ; 19: 126, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31110467

RESUMEN

BACKGROUND: Ubinuclein-2 (UBN2) is a nuclear protein that interacts with many transcription factors. The molecular role and mechanism of UBN2 in the development and progression of cancers, including colorectal cancer (CRC), is not well understood. The current study explored the role of UBN2 in the development and progression CRC. METHODS: Oncomine network and The Cancer Genome Atlas (TCGA) database were downloaded and Gene Set Enrichment Analysis (GSEA) was performed to compare the UBN2's expression between normal and tumor tissues, as well as the potential correlation of UBN2 expression with signaling pathways. Immunohistochemistry (IHC), qRT-PCR and Western blotting were performed to determine the expression of UBN2 in CRC tissues or cell lines. In vitro proliferation and invasion assays, and orthotopic mouse metastatic model were used to analyze the effect of UBN2 on the development and progression of CRC. RESULTS: The analysis of UBN2 expression using Oncomine network showed that UBN2 was upregulated in CRC tissues compared to matched adjacent normal intestinal epithelial tissues. IHC, qRT-PCR and Western blotting confirmed that UBN2 expression is higher in CRC tissues compared with matched adjacent normal intestinal epithelial tissues. In addition, analyses of TCGA data revealed that high UBN2 expression was associated with advanced stages of lymph node metastasis, distant metastasis, and short survival time in CRC patients. IHC showed that high UBN2 expression is correlated with advanced stages of CRC. Moreover, UBN2 is highly expressed in the liver metastatic lesions. Furthermore, knockdown of UBN2 inhibited the growth, invasiveness and metastasis of CRC cells via regulation of the Ras/MAPK signaling pathway. CONCLUSION: The current study demonstrates that UBN2 promotes tumor progression in CRC. UBN2 may be used as a promising biomarker for predicting the prognosis of CRC patients.

17.
Virol J ; 15(1): 172, 2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30409205

RESUMEN

Influenza A virus (IAV) is an important pathogen that poses a severe threat to the health of humans. Nucleoprotein (NP) of IAV plays crucial roles in the viral life cycle by interacting with various cellular factors. Histone Acetyl Transferase TIP60 is a key target of several viral proteins during infection, including HIV-1 Tat, HPV E6, HTLV-1 p30II and HCMV UL27 proteins. However, Whether the interaction between the IAV NP and TIP60, and the role of TIP60 in IAV life cycle are largely unknown. Here, we showed that IAV infection up-regulated TIP60 protein and RNA expression. Overexpression of TIP60 inhibited viral protein and RNA expression and reduced the progeny viral titer. Further study revealed that TIP60 inhibited viral replication through activation of TBK1-IRF3 signaling pathway. Furthermore, we demonstrated that the NP protein of IAV interacted with TIP60. Together, these results indicate that TIP60 play a repressor in IAV infection, and it may be a possible target for antiviral drugs.


Asunto(s)
Interacciones Huésped-Patógeno , Virus de la Influenza A/fisiología , Lisina Acetiltransferasa 5/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Proteínas del Núcleo Viral/metabolismo , Replicación Viral , Células A549 , Replicación del ADN , Células HEK293 , Humanos , Virus de la Influenza A/genética , Gripe Humana , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Lisina Acetiltransferasa 5/genética , Proteínas de la Nucleocápside , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al ARN/genética , Regulación hacia Arriba , Proteínas del Núcleo Viral/genética
18.
Cancer Lett ; 439: 78-90, 2018 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-30253191

RESUMEN

Forkhead box F1 (FOXF1) has been recently implicated in the progression and metastasis of lung cancer and breast cancer. However, the biological functions and underlying mechanisms by which FOXF1 regulates the progression of colorectal cancer (CRC) are largely unknown. As shown in our previous study, FOXF1 is upregulated in 182 CRC tissues, and elevated FOXF1 expression is significantly associated with microvessel density and advanced TNM (T = primary tumour; N = regional lymph nodes; M = distant metastasis) stages. In this study, 43 CRC tissues collected from patients who underwent treatment with first-line standard chemotherapeutic regimens in combination with bevacizumab were used to explore the correlation between FOXF1 expression and resistance to bevacizumab. In addition, FOXF1 regulated angiogenesis by inducing the transcription of vascular endothelial growth factor A1 (VEGFA) in vitro and in vivo. Furthermore, upregulation of FOXF1 enhanced bevacizumab resistance in CRC, and inhibition of VEGFA attenuated angiogenesis and bevacizumab resistance in FOXF1-overexpressing CRC cells. These results suggest that FOXF1 plays critical roles in CRC angiogenesis and bevacizumab resistance by inducing VEGFA transcription and that FOXF1 represents a potentially new therapeutic strategy and biomarker for anti-angiogenic therapy against CRC.


Asunto(s)
Bevacizumab/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Factores de Transcripción Forkhead/genética , Neovascularización Patológica/genética , Factor A de Crecimiento Endotelial Vascular/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Bevacizumab/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Neoplasias Colorrectales/irrigación sanguínea , Neoplasias Colorrectales/genética , Resistencia a Antineoplásicos/genética , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Carga Tumoral/efectos de los fármacos , Carga Tumoral/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
Neoplasia ; 20(10): 996-1007, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30189360

RESUMEN

Forkhead Box F1 (FOXF1) has been recently implicated in cancer progression and metastasis of lung cancer and breast cancer. However, the biological functions and underlying mechanisms of FOXF1 in the regulation of the progression of colorectal cancer (CRC) are largely unknown. We showed that FOXF1 was up-regulated in 93 paraffin-embedded archived human CRC tissue, and both high expression and nuclear location of FOXF1 were significantly associated with the aggressive characteristics and poorer survival of CRC patients. The GSEA analysis showed that the higher level of FOXF1 was positively associated with an enrichment of EMT gene signatures, and exogenous overexpression of FOXF1 induced EMT by transcriptionally activating SNAI1. Exogenous overexpression FOXF1 functionally promoted invasion and metastasis features of CRC cells, and inhibition of SNAI1 attenuates the invasive phenotype and metastatic potential of FOXF1-overexpressing CRC cells. Furthermore, the results of the tissue chip showed that the expression of FOXF1 was positively correlated with SNAI1 in CRC tissues chip. These results suggested that FOXF1 plays a critical role in CRC metastasis by inducing EMT via transcriptional activation of SNAI1, highlighting a potential new therapeutic strategy for CRC.


Asunto(s)
Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/fisiología , Factores de Transcripción Forkhead/genética , Factores de Transcripción de la Familia Snail/genética , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Transición Epitelial-Mesenquimal/genética , Femenino , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Endogámicos BALB C , Factores de Transcripción de la Familia Snail/metabolismo , Activación Transcripcional , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Org Biomol Chem ; 11(30): 5023-33, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23801247

RESUMEN

Photoreactions of isoquinoline-1,3,4-triones and oxazoles with different substituents were found to give different chemo-, regio- and diastereoselectivities. The substituent at the C5 on the oxazole ring showed great influence on the chemoselectivity of the photoreaction as well as on the transformation of the photocycloadducts. The 2-methyl-5-methoxyoxazoles reacted with isoquinoline-1,3,4-triones rapidly and gave spirooxetanes with high regio- and diastereo-selectivity. Diastereoselectivity in the reaction of 2-phenyl-5-methoxyoxazoles with isoquinoline-1,3,4-triones was relevant to the substituent on the 4-position on the oxazole ring. Replacement of the 5-methoxy group with 5-methyl or 5-phenyl resulted in significant decrease on the reactivity of the oxazole as well as change on the diastereoselectivity in photocycloaddition with isoquinoline-1,3,4-triones. Acid-mediated transformations of the photocycloadduct spirooxetanes was found to give different type of products including ß-hydroxy-α-aminocarbonyl compounds and spiroisoquinolineoxazolines under different reaction conditions. Substituents on the spirooxetanes as well as the type and amount of acid used in the reaction played important roles in determining the type and diastereoselectivity of the products in the transformations.


Asunto(s)
Isoquinolinas/química , Oxazoles/química , Ciclización , Modelos Moleculares , Estructura Molecular , Procesos Fotoquímicos , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...