Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Photochem Photobiol ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849970

RESUMEN

Resistance to platinum-based chemotherapies remains a significant challenge in advanced-stage high-grade serous ovarian carcinoma, and patients with malignant ascites face the poorest outcomes. It is, therefore, important to understand the effects of ascites, including the associated fluid shear stress (FSS), on phenotypic changes and therapy response, specifically FSS-induced chemotherapy resistance and the underlying mechanisms in ovarian cancer. This study investigated the effects of FSS on response to cisplatin, a platinum-based chemotherapy, and doxorubicin, an anthracycline, both of which are commonly used to manage advanced-stage ovarian cancer. Consistent with prior research, OVCAR-3 and Caov-3 cells cultivated under FSS demonstrated significant resistance to cisplatin. Examination of the role of mitochondria revealed an increase in mitochondrial DNA copy number and intracellular ATP content in cultures grown under FSS, suggesting that changes in mitochondria number and metabolic activity may contribute to platinum resistance. Interestingly, no resistance to doxorubicin was observed under FSS, the first such observation of a lack of resistance under these conditions. Finally, this study demonstrated the potential of photodynamic priming using benzoporphyrin derivative, a clinically approved photosensitizer that localizes in part to mitochondria and endoplasmic reticula, to enhance the efficacy of cisplatin, but not doxorubicin, thereby overcoming FSS-induced platinum resistance.

3.
Photochem Photobiol ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38824410

RESUMEN

P-glycoprotein (P-gp, ABCB1) is a well-researched ATP-binding cassette (ABC) drug efflux transporter linked to the development of cancer multidrug resistance (MDR). Despite extensive studies, approved therapies to safely inhibit P-gp in clinical settings are lacking, necessitating innovative strategies beyond conventional inhibitors or antibodies to reverse MDR. Photodynamic therapy is a globally approved cancer treatment that uses targeted, harmless red light to activate non-toxic photosensitizers, confining its cytotoxic photochemical effects to disease sites while sparing healthy tissues. This study demonstrates that photodynamic priming (PDP), a sub-cytotoxic photodynamic therapy process, can inhibit P-gp function by modulating cellular respiration and ATP levels in light accessible regions. Using chemoresistant (VBL-MDA-MB-231) and chemosensitive (MDA-MB-231) triple-negative breast cancer cell lines, we showed that PDP decreases mitochondrial membrane potential by 54.4% ± 30.4 and reduces mitochondrial ATP production rates by 94.9% ± 3.46. Flow cytometry studies showed PDP can effectively improve the retention of P-gp substrates (calcein) by up to 228.4% ± 156.3 in chemoresistant VBL-MDA-MB-231 cells, but not in chemosensitive MDA-MB-231 cells. Further analysis revealed that PDP did not alter the cell surface expression level of P-gp in VBL-MDA-MB-231 cells. These findings indicate that PDP can reduce cellular ATP below the levels that is required for the function of P-gp and improve intracellular substrate retention. We propose that PDP in combination with chemotherapy drugs, might improve the efficacy of chemotherapy and overcome cancer MDR.

4.
Comput Struct Biotechnol J ; 24: 322-333, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38690549

RESUMEN

Data curation for a hospital-based cancer registry heavily relies on the labor-intensive manual abstraction process by cancer registrars to identify cancer-related information from free-text electronic health records. To streamline this process, a natural language processing system incorporating a hybrid of deep learning-based and rule-based approaches for identifying lung cancer registry-related concepts, along with a symbolic expert system that generates registry coding based on weighted rules, was developed. The system is integrated with the hospital information system at a medical center to provide cancer registrars with a patient journey visualization platform. The embedded system offers a comprehensive view of patient reports annotated with significant registry concepts to facilitate the manual coding process and elevate overall quality. Extensive evaluations, including comparisons with state-of-the-art methods, were conducted using a lung cancer dataset comprising 1428 patients from the medical center. The experimental results illustrate the effectiveness of the developed system, consistently achieving F1-scores of 0.85 and 1.00 across 30 coding items. Registrar feedback highlights the system's reliability as a tool for assisting and auditing the abstraction. By presenting key registry items along the timeline of a patient's reports with accurate code predictions, the system improves the quality of registrar outcomes and reduces the labor resources and time required for data abstraction. Our study highlights advancements in cancer registry coding practices, demonstrating that the proposed hybrid weighted neural-symbolic cancer registry system is reliable and efficient for assisting cancer registrars in the coding workflow and contributing to clinical outcomes.

5.
J Photochem Photobiol B ; 255: 112910, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663337

RESUMEN

The prognosis for patients with advanced-stage pancreatic ductal adenocarcinoma (PDAC) remains dismal. It is generally accepted that combination cancer therapies offer the most promise, such as Folforinox, despite their associated high toxicity. This study addresses the issue of chemoresistance by introducing a complementary dual priming approach to attenuate the DNA repair mechanism and to improve the efficacy of a type 1 topoisomerase (Top1) inhibitor. The result is a regimen that integrates drug-repurposing and nanotechnology using 3 clinically relevant FDA-approved agents (1) Top1 inhibitor (irinotecan) at subcytotoxic doses (2) benzoporphyrin derivative (BPD) as a photoactive molecule for photodynamic priming (PDP) to improve the delivery of irinotecan within the cancer cell and (3) minocycline priming (MNP) to modulate DNA repair enzyme Tdp1 (tyrosyl-DNA phosphodiesterase) activity. We demonstrate in heterotypic 3D cancer models that incorporate cancer cells and pancreatic cancer-associated fibroblasts that simultaneous targeting of Tdp1 and Top1 were significantly more effective by employing MNP and photoactivatable multi-inhibitor liposomes encapsulating BPD and irinotecan compared to monotherapies or a cocktail of dual or triple-agents. These data are encouraging and warrant further work in appropriate animal models to evolve improved therapeutic regimens.


Asunto(s)
Carcinoma Ductal Pancreático , Irinotecán , Minociclina , Neoplasias Pancreáticas , Fotoquimioterapia , Humanos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Línea Celular Tumoral , Minociclina/farmacología , Minociclina/uso terapéutico , Irinotecán/farmacología , Irinotecán/uso terapéutico , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Hidrolasas Diéster Fosfóricas/metabolismo , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/uso terapéutico , Inhibidores de Topoisomerasa I/química , Liposomas/química
6.
Adv Sci (Weinh) ; 11(17): e2302872, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38445882

RESUMEN

Glioblastoma (GBM) is hard to treat due to cellular invasion into functioning brain tissues, limited drug delivery, and evolved treatment resistance. Recurrence is nearly universal even after surgery, chemotherapy, and radiation. Photodynamic therapy (PDT) involves photosensitizer administration followed by light activation to generate reactive oxygen species at tumor sites, thereby killing cells or inducing biological changes. PDT can ablate unresectable GBM and sensitize tumors to chemotherapy. Verteporfin (VP) is a promising photosensitizer that relies on liposomal carriers for clinical use. While lipids increase VP's solubility, they also reduce intracellular photosensitizer accumulation. Here, a pure-drug nanoformulation of VP, termed "NanoVP", eliminating the need for lipids, excipients, or stabilizers is reported. NanoVP has a tunable size (65-150 nm) and 1500-fold higher photosensitizer loading capacity than liposomal VP. NanoVP shows a 2-fold increase in photosensitizer uptake and superior PDT efficacy in GBM cells compared to liposomal VP. In mouse models, NanoVP-PDT improved tumor control and extended animal survival, outperforming liposomal VP and 5-aminolevulinic acid (5-ALA). Moreover, low-dose NanoVP-PDT can safely open the blood-brain barrier, increasing drug accumulation in rat brains by 5.5-fold compared to 5-ALA. NanoVP is a new photosensitizer formulation that has the potential to facilitate PDT for the treatment of GBM.


Asunto(s)
Neoplasias Encefálicas , Sistemas de Liberación de Medicamentos , Fotoquimioterapia , Fármacos Fotosensibilizantes , Verteporfina , Animales , Fotoquimioterapia/métodos , Verteporfina/farmacología , Verteporfina/uso terapéutico , Ratones , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Glioblastoma/tratamiento farmacológico , Nanopartículas/química , Modelos Animales de Enfermedad , Humanos , Ratas , Liposomas , Línea Celular Tumoral , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos
7.
Cell Biosci ; 14(1): 20, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321470

RESUMEN

BACKGROUND: Within the last decade, poly(ADP-ribose) polymerase inhibitors (PARPi) have emerged in the clinic as an effective treatment for numerous malignancies. Preclinical data have demonstrated powerful combination effects of PARPi paired with photodynamic therapy (PDT), which involves light-activation of specialized dyes (photosensitizers) to stimulate cancer cell death through reactive oxygen species generation. RESULTS: In this report, the most potent clinical PARP inhibitor, talazoparib, is loaded into the core of a polymeric nanoparticle (NP-Tal), which is interfaced with antibody-photosensitizer conjugates (photoimmunoconjugates, PICs) to form PIC-NP-Tal. In parallel, a new 3D fluorescent coculture model is developed using the parental OVCAR-8-DsRed2 and the chemo-resistant subline, NCI/ADR-RES-EGFP. This model enables quantification of trends in the evolutionary dynamics of acquired chemoresistance in response to various treatment regimes. Results reveal that at a low dosage (0.01 µM), NP-Tal kills the parental cells while sparing the chemo-resistant subline, thereby driving chemoresistance. Next, PIC-NP-Tal and relevant controls are evaluated in the 3D coculture model at multiple irradiation doses to characterize effects on total spheroid ablation and relative changes in parental and subline cell population dynamics. Total spheroid ablation data shows potent combination effects when PIC and NP-Tal are co-administered, but decreased efficacy with the conjugated formulation (PIC-NP-Tal). Analysis of cell population dynamics reveals that PIC, BPD + NP-Tal, PIC + NP-Tal, and PIC-NP-Tal demonstrate selection pressures towards chemoresistance. CONCLUSIONS: This study provides key insights into manufacturing parameters for PARPi-loaded nanoparticles, as well as the potential role of PDT-based combination therapies in the context of acquired drug resistance.

8.
Asian Nurs Res (Korean Soc Nurs Sci) ; 18(1): 28-35, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38246233

RESUMEN

PURPOSE: During the COVID-19 pandemic, nurses have faced many professional and ethical dilemmas and challenges along with bearing physical, mental, and emotional stress resulting from worrying about themselves or their family being infected and stigmatized. This stress can potentially lead to burnout and resignation. Professional resilience is crucial for nurses to cope with these adverse situations. This study aimed to investigate the process by which nurses adapt, change, and overcome challenges during the COVID-19 pandemic and ultimately demonstrate professional resilience. METHODS: Descriptive phenomenology was applied. Semi-structured interviews were conducted with 11 nurses working in COVID-19 wards and intensive care units to collect data. Giorgi's phenomenological analysis method was employed. RESULTS: Based on the interview responses, four major themes were identified: 1) balancing patient care, self-protection, and passing on experience; 2) providing timely pandemic team resources and social support; 3) nurses' perseverance amid social discourse and constrained lives; and 4) selfless dedication shaping nursing's pinnacle experiences. CONCLUSIONS: In the face of a sudden pandemic, frontline nurses play a critical role in maintaining medical capacity. Consequently, they must balance their families, lives, and work while adapting to the impact of the pandemic and changing practices and procedures based on the development of the pandemic and policy demands. The study findings provide insights into the challenges and emotional experiences encountered by nurses during a sudden pandemic outbreak and can serve as a reference for developing strategies to help nurses overcome these challenges and enhance their professional resilience.


Asunto(s)
COVID-19 , Enfermeras y Enfermeros , Resiliencia Psicológica , Humanos , Pandemias , Pacientes , Brotes de Enfermedades , Investigación Cualitativa
9.
Plant Cell Physiol ; 65(3): 405-419, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38153763

RESUMEN

Phalaenopsis aphrodite can be induced to initiate spike growth and flowering by exposure to low ambient temperatures. However, the factors and mechanisms responsible for spike initiation in P. aphrodite remain largely unknown. In this study, we show that a repressor Flowing Locus T-like (FTL) gene, FTL, can act as a negative regulator of spike initiation in P. aphrodite. The mRNA transcripts of PaFTL are consistently high during high ambient temperature, thereby preventing premature spike initiation. However, during low ambient temperature, PaFTL expression falls while FT expression increases, allowing for spike initiation. Knock-down of PaFTL expression through virus-inducing gene silencing promoted spike initiation at 30/28°C. Moreover, PaFTL interacts with FLOWERING LOCUS D in a similar manner to FT to regulate downstream flowering initiation genes. Transgenic P. aphrodite plants exhibiting high expression of PaFTL do not undergo spike initiation, even when exposed to low ambient temperatures. These findings shed light on the flowering mechanisms in Phalaenopsis and provide new insights into how perennial plants govern spike initiation in response to temperature cues.


Asunto(s)
Orchidaceae , Temperatura , Orchidaceae/metabolismo , Flores/metabolismo , Frío , Regulación de la Expresión Génica de las Plantas
11.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37986908

RESUMEN

ATP-binding cassette (ABC) transporters expressed at the blood-brain barrier (BBB) impede delivery of therapeutic agents to the brain, including agents to treat neurodegenerative diseases and primary and metastatic brain cancers. Two transporters, P-glycoprotein (P-gp, ABCB1) and ABCG2, are highly expressed at the BBB and are responsible for the efflux of numerous clinically useful chemotherapeutic agents, including irinotecan, paclitaxel, and doxorubicin. Based on a previous mouse model, we have generated transgenic zebrafish in which expression of NanoLuciferase (NanoLuc) is controlled by the promoter of glial fibrillary acidic protein, leading to expression in zebrafish glia. To identify agents that disrupt the BBB, including inhibitors of ABCB1 and ABCG2, we identified NanoLuc substrates that are also transported by P-gp, ABCG2, and their zebrafish homologs. These substrates will elevate the amount of bioluminescent light produced in the transgenic zebrafish with BBB disruption. We transfected HEK293 cells with NanoLuc and either human ABCB1, ABCG2, or their zebrafish homologs Abcb4 or Abcg2a, respectively, and expressed at the zebrafish BBB. We evaluated the luminescence of ten NanoLuc substrates, then screened the eight brightest to determine which are most efficiently effluxed by the ABC transporters. We identified one substrate efficiently pumped out by ABCB1, two by Abcb4, six by ABCG2, and four by Abcg2a. These data will aid in the development of a transgenic zebrafish model of the BBB to identify novel BBB disruptors and should prove useful in the development of other animal models that use NanoLuc as a reporter.

12.
Sci Adv ; 9(36): eadi3441, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37672582

RESUMEN

Fluorescence-guided intervention can bolster standard therapies by detecting and treating microscopic tumors before lethal recurrence. Tremendous progress in photoimmunotherapy and nanotechnology has been made to treat metastasis. However, many are lost in translation due to heterogeneous treatment effects. Here, we integrate three technological advances in targeted photo-activable multi-agent liposome (TPMAL), fluorescence-guided intervention, and laser endoscopy (ML7710) to improve photoimmunotherapy. TPMAL consists of a nanoliposome chemotherapy labeled with fluorophores for tracking and photosensitizer immunoconjugates for photoimmunotherapy. ML7710 is connected to Modulight Cloud to capture and analyze multispectral emission from TPMAL for fluorescence-guided drug delivery (FGDD) and fluorescence-guided light dosimetry (FGLD) in peritoneal carcinomatosis mouse models. FGDD revealed that TPMAL enhances drug delivery to metastases by 14-fold. ML7710 captured interpatient variability in TPMAL uptake and prompted FGLD in >50% of animals. By combining TPMAL, ML7710, and fluorescence-guided intervention, variation in treatment response was substantially reduced and tumor control improved without side effects.


Asunto(s)
Neoplasias Peritoneales , Animales , Ratones , Neoplasias Peritoneales/terapia , Inmunoterapia , Fototerapia , Nanotecnología , Sistemas de Liberación de Medicamentos , Liposomas
13.
Photochem Photobiol ; 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37496175

RESUMEN

Various fluorescence imaging agents are currently under clinical studies. Despite significant benefits, phototoxicity is a barrier to the clinical translation of fluorophores. Current regulatory guidelines on medication-based phototoxicity focus on skin effects during sun exposure. However, with systemic and local administration of fluorophores and targeted illumination, there is now possibility of photochemical damage to deeper tissues during intraoperative imaging procedures. Hence, independent knowledge regarding phototoxicity is required to facilitate the development of fluorescence imaging products. Previously, we studied a cell-free assay for initial screening of reactive molecular species generation from fluorophores. The current work addresses a safety test method based on cell viability as an adjunct and a comparator with the cell-free assay. Our goal is to modify and implement an approach based on the in vitro 3T3 neutral red uptake assay of the Organization for Economic Co-Operation and Development Test Guideline 432 (OECD TG432) to evaluate the photocytotoxicity of clinically relevant fluorophores. These included indocyanine green (ICG), proflavine, methylene blue (MB), and IRDye800, as well as control photosensitizers, benzoporphyrin derivative (BPD) and rose bengal (RB). We performed measurements at agent concentrations and illumination parameters used for clinic imaging. Our results aligned with prior studies, indicating photocytotoxicity in RB and BPD and an absence of reactivity for ICG and IRDye800. DNA interactive agents, proflavine and MB, exhibited drug/light dose-response curves like photosensitizers. This study provides evidence and insights into practices useful for testing the photochemical safety of fluorescence imaging products.

14.
iScience ; 26(8): 107221, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37520715

RESUMEN

Circulating drugs in the peritoneal cavity is an effective strategy for advanced ovarian cancer treatment. Photoimmunotherapy, an emerging modality with potential for the treatment of ovarian cancer, involves near-infrared light activation of antibody-photosensitizer conjugates (photoimmunoconjugates) to generate cytotoxic reactive oxygen species. Here, a microfluidic cell culture model is used to study how fluid flow-induced shear stress affects photoimmunoconjugate delivery to ovarian cancer cells. Photoimmunoconjugates are composed of the antibody, cetuximab, conjugated to the photosensitizer, and benzoporphyrin derivative. Longitudinal tracking of photoimmunoconjugate treatment under flow conditions reveals enhancements in subcellular photosensitizer accumulation. Compared to static conditions, fluid flow-induced shear stress at 0.5 and 1 dyn/cm2 doubled the cellular delivery of photoimmunoconjugates. Fluid flow-mediated treatment with three different photosensitizer formulations (benzoporphyrin derivative, photoimmunoconjugates, and photoimmunoconjugate-coated liposomes) led to enhanced phototoxicity compared to static conditions. This study confirms the fundamental role of fluid flow-induced shear stress in the anti-cancer effects of photoimmunotherapy.

15.
Sci Rep ; 13(1): 3827, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882455

RESUMEN

PM[Formula: see text] prediction plays an important role for governments in establishing policies to control the emission of excessive atmospheric pollutants to protect the health of citizens. However, traditional machine learning methods that use data collected from ground-level monitoring stations have reached their limit with poor model generalization and insufficient data. We propose a composite neural network trained with aerosol optical depth (AOD) and weather data collected from satellites, as well as interpolated ocean wind features. We investigate the model outputs of different components of the composite neural network, concluding that the proposed composite neural network architecture yields significant improvements in overall performance compared to each component and the ensemble model benchmarks. The monthly analysis also demonstrates the superiority of the proposed architecture for stations where land-sea breezes frequently occur in the southern and central Taiwan in the months when land-sea breeze dominates the accumulation of PM[Formula: see text].

16.
IEEE Trans Med Imaging ; 42(3): 739-749, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36260574

RESUMEN

Acoustoelectric (AE) imaging can potentially image biological currents at high spatial (~mm) and temporal (~ms) resolution. However, it does not directly map the current field distribution due to signal modulation by the acoustic field and electric lead fields. Here we present a new method for current source density (CSD) imaging. The fundamental AE equation is inverted using truncated singular value decomposition (TSVD) combined with Tikhonov regularization, where the optimal regularization parameter is found based on a modified L-curve criterion with TSVD. After deconvolution of acoustic fields, the current field can be directly reconstructed from lead field projections and the CSD image computed from the divergence of that field. A cube phantom model with a single dipole source was used for both simulation and bench-top phantom studies, where 2D AE signals generated by a 0.6 MHz 1.5D array transducer were recorded by orthogonal leads in a 3D Cartesian coordinate system. In simulations, the CSD reconstruction had significantly improved image quality and current source localization compared to AE images, and performance further improved as the fractional bandwidth (BW) increased. Similar results were obtained in the phantom with a time-varying current injected. Finally, a feasibility study using an in vivo swine heart model showed that optimally reconstructed CSD images better localized the current source than AE images over the cardiac cycle.


Asunto(s)
Imagenología Tridimensional , Animales , Porcinos , Simulación por Computador , Imagenología Tridimensional/métodos , Fantasmas de Imagen
17.
IEEE J Biomed Health Inform ; 27(5): 2243-2254, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35981060

RESUMEN

Compressed sensing (CS) has drawn much attention in electrocardiography (ECG) signal monitoring for its effectiveness in reducing the transmission power of wireless sensor systems. Compressed analysis (CA) is an improved methodology to further elevate the system's efficiency by directly performing classification on the compressed data at the back-end of the monitoring system. However, conventional CA lacks of considering the effect of noise, which is an essential issue in practical applications. In this work, we observe that noise causes an accuracy drop in the previous CA framework, thus discovering that different signal-to-noise ratios (SNRs) require different sizes of CA models. We propose a two-stage noise-level aware compressed analysis framework. First, we apply the singular value decomposition to estimate the noise level in the compressed domain by projecting the received signal into the null space of the compressed ECG signal. A transfer-learning-aided algorithm is proposed to reduce the long-training-time drawback. Second, we select the optimal CA model dynamically based on the estimated SNR. The CA model will use a predictive dictionary to extract features from the ECG signal, and then imposes a linear classifier for classification. A weight-sharing training mechanism is proposed to enable parameter sharing among the pre-trained models, thus significantly reducing storage overhead. Lastly, we validate our framework on the atrial fibrillation ECG signal detection on the NTUH and MIT-BIH datasets. We show improvement in the accuracy of 6.4% and 7.7% in the low SNR condition over the state-of-the-art CA framework.


Asunto(s)
Fibrilación Atrial , Procesamiento de Señales Asistido por Computador , Humanos , Electrocardiografía/métodos , Algoritmos , Fibrilación Atrial/diagnóstico , Monitoreo Fisiológico
18.
Metabolites ; 12(11)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36422237

RESUMEN

Breast cancer is the most diagnosed cancer type in women, with it being the second most deadly cancer in terms of total yearly mortality. Due to the prevalence of this disease, better methods are needed for both detection and treatment. Reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are autofluorescent biomarkers that lend insight into cell and tissue metabolism. As such, we developed an endoscopic device to measure these metabolites in tissue to differentiate between malignant tumors and normal tissue. We performed initial validations in liquid phantoms as well as compared to a previously validated redox imaging system. We also imaged ex vivo tissue samples after modulation with carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) and a combination of rotenone and antimycin A. We then imaged the rim and the core of MDA-MB-231 breast cancer tumors, with our results showing that the core of a cancerous lesion has a significantly higher optical redox ratio ([FAD]/([FAD] + [NADH])) than the rim, which agrees with previously published results. The mouse muscle tissues exhibited a significantly lower FAD, higher NADH, and lower redox ratio compared to the tumor core or rim. We also used the endoscope to measure NADH and FAD after photodynamic therapy treatment, a light-activated treatment methodology. Our results found that the NADH signal increases in the malignancy rim and core, while the core of cancers demonstrated a significant increase in the FAD signal.

19.
Artículo en Inglés | MEDLINE | ID: mdl-35682509

RESUMEN

Background: A lack of health literacy may negatively impact patient adherence behavior in health care delivery, leading to a major threat to individual health and wellbeing and an increasing financial burden on national healthcare systems. Therefore, how to cultivate citizens' health literacy, especially electronic health (eHealth) literacy that is closely related to the Internet, may be seen as a way to reduce the financial burden of the national healthcare systems, which is the responsibility of every citizen. However, previous studies on medication adherence have mostly been conducted with chronic disease patient samples rather than normal samples. Teachers are not only the main body of school health efforts, but also role models for students' healthy behavior. Therefore, understanding differences in eHealth literacy beliefs among schoolteachers would be helpful for improving the existing health promoting programs and merit specific research. Aims: The present study identified the relationships among gender, age, electronic health (eHealth) literacy, beliefs about medicines, and medication adherence among elementary and secondary school teachers. Methods: A total of 485 teachers aged 22−51 years completed a pen-and-paper questionnaire. The instruments included an eHealth literacy scale, a belief about medicines scale and a medication adherence scale. Results: The results showed a significant difference between genders in necessity beliefs about medication (t = 2.00, p < 0.05), and a significant difference between ages in functional eHealth literacy (F = 3.18, p < 0.05) and in necessity beliefs about medication (Welch = 7.63, p < 0.01). Moreover, age (ß = 0.09), functional eHealth literacy (ß = 0.12), and necessity beliefs about medication (ß = 0.11) positively predicted medication adherence, while concerns about medication (ß = −0.23) negatively predicted medication adherence. Conclusions: The results showed that male teachers had stronger concerns about medication than female teachers. Teachers aged 42−51 years had lower functional eHealth literacy and stronger necessity beliefs about medication than teachers aged 22−31 years. In addition, teachers who were older, had higher functional eHealth literacy, had stronger necessity beliefs about medication, and had fewer concerns about medication tended to take their medications as prescribed. These findings revealed that helping teachers develop high eHealth literacy and positive beliefs about medicines is an effective strategy for improving medication adherence.


Asunto(s)
Alfabetización en Salud , Telemedicina , Electrónica , Femenino , Conocimientos, Actitudes y Práctica en Salud , Alfabetización en Salud/métodos , Humanos , Masculino , Cumplimiento de la Medicación , Instituciones Académicas , Encuestas y Cuestionarios
20.
Artículo en Inglés | MEDLINE | ID: mdl-35735205

RESUMEN

Laser interstitial thermal therapy (LITT) guided by magnetic resonance imaging (MRI) is a new treatment option for patients with brain and non-central nervous system (non-CNS) tumors. MRI guidance allows for precise placement of optical fiber in the tumor, while MR thermometry provides real-time monitoring and assessment of thermal doses during the procedure. Despite promising clinical results, LITT complications relating to brain tumor procedures, such as hemorrhage, edema, seizures, and thermal injury to nearby healthy tissues, remain a significant concern. To address these complications, nanoparticles offer unique prospects for precise interstitial hyperthermia applications that increase heat transport within the tumor while reducing thermal impacts on neighboring healthy tissues. Furthermore, nanoparticles permit the co-delivery of therapeutic compounds that not only synergize with LITT, but can also improve overall effectiveness and safety. In addition, efficient heat-generating nanoparticles with unique optical properties can enhance LITT treatments through improved real-time imaging and thermal sensing. This review will focus on (1) types of inorganic and organic nanoparticles for LITT; (2) in vitro, in silico, and ex vivo studies that investigate nanoparticles' effect on light-tissue interactions; and (3) the role of nanoparticle formulations in advancing clinically relevant image-guided technologies for LITT. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.


Asunto(s)
Neoplasias Encefálicas , Hipertermia Inducida , Terapia por Láser , Nanopartículas , Humanos , Terapia por Láser/efectos adversos , Terapia por Láser/métodos , Rayos Láser , Imagen por Resonancia Magnética/métodos , Nanopartículas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA