Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 9(10)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775156

RESUMEN

Since its emergence, SARS-CoV-2 has been continuously evolving, hampering the effectiveness of current vaccines against COVID-19. mAbs can be used to treat patients at risk of severe COVID-19. Thus, the development of broadly protective mAbs and an understanding of the underlying protective mechanisms are of great importance. Here, we isolated mAbs from donors with breakthrough infection with Omicron subvariants using a single-B cell screening platform. We identified a mAb, O5C2, which possesses broad-spectrum neutralization and antibody-dependent cell-mediated cytotoxic activities against SARS-CoV-2 variants, including EG.5.1. Single-particle analysis by cryo-electron microscopy revealed that O5C2 targeted an unusually large epitope within the receptor-binding domain of spike protein that overlapped with the angiotensin-converting enzyme 2 binding interface. Furthermore, O5C2 effectively protected against BA.5 Omicron infection in vivo by mediating changes in transcriptomes enriched in genes involved in apoptosis and interferon responses. Our findings provide insights into the development of pan-protective mAbs against SARS-CoV-2.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/inmunología , Humanos , COVID-19/inmunología , COVID-19/virología , Anticuerpos Antivirales/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Animales , Ratones , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Microscopía por Crioelectrón , Epítopos/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Femenino
2.
Antimicrob Agents Chemother ; 68(4): e0095623, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38446062

RESUMEN

Viral RNA-dependent RNA polymerase (RdRp), a highly conserved molecule in RNA viruses, has recently emerged as a promising drug target for broad-acting inhibitors. Through a Vero E6-based anti-cytopathic effect assay, we found that BPR3P0128, which incorporates a quinoline core similar to hydroxychloroquine, outperformed the adenosine analog remdesivir in inhibiting RdRp activity (EC50 = 0.66 µM and 3 µM, respectively). BPR3P0128 demonstrated broad-spectrum activity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern. When introduced after viral adsorption, BPR3P0128 significantly decreased SARS-CoV-2 replication; however, it did not affect the early entry stage, as evidenced by a time-of-drug-addition assay. This suggests that BPR3P0128's primary action takes place during viral replication. We also found that BPR3P0128 effectively reduced the expression of proinflammatory cytokines in human lung epithelial Calu-3 cells infected with SARS-CoV-2. Molecular docking analysis showed that BPR3P0128 targets the RdRp channel, inhibiting substrate entry, which implies it operates differently-but complementary-with remdesivir. Utilizing an optimized cell-based minigenome RdRp reporter assay, we confirmed that BPR3P0128 exhibited potent inhibitory activity. However, an enzyme-based RdRp assay employing purified recombinant nsp12/nsp7/nsp8 failed to corroborate this inhibitory activity. This suggests that BPR3P0128 may inhibit activity by targeting host-related RdRp-associated factors. Moreover, we discovered that a combination of BPR3P0128 and remdesivir had a synergistic effect-a result likely due to both drugs interacting with separate domains of the RdRp. This novel synergy between the two drugs reinforces the potential clinical value of the BPR3P0128-remdesivir combination in combating various SARS-CoV-2 variants of concern.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , COVID-19 , Pirazoles , Quinolinas , Humanos , SARS-CoV-2/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Simulación del Acoplamiento Molecular , Tratamiento Farmacológico de COVID-19 , Antivirales/química
3.
Heliyon ; 9(11): e22138, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38045158

RESUMEN

The incidence of zoonotic diseases, such as coronavirus disease 2019 and Ebola virus disease, is increasing worldwide. However, drug and vaccine development for zoonotic diseases has been hampered because the experiments involving live viruses are limited to high-containment laboratories. The Ebola virus minigenome system enables researchers to study the Ebola virus under BSL-2 conditions. Here, we found that the addition of the nucleocapsid protein of human coronaviruses, such as severe acute respiratory syndrome coronavirus 2, can increase the ratio of green fluorescent protein-positive cells by 1.5-2 folds in the Ebola virus minigenome system. Further analysis showed that the nucleocapsid protein acts as an activator of the Ebola virus minigenome system. Here, we developed an EBOV MiniG Plus system based on the Ebola virus minigenome system by adding the SARS-CoV-2 nucleocapsid protein. By evaluating the antiviral effect of remdesivir and rupintrivir, we demonstrated that compared to that of the traditional Ebola virus minigenome system, significant concentration-dependent activity was observed in the EBOV MiniG Plus system. Taken together, these results demonstrate the utility of adding nucleocapsid protein to the Ebola virus minigenome system to create a powerful platform for screening antiviral drugs against the Ebola virus.

4.
J Adv Res ; 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37557954

RESUMEN

BACKGROUND: Modifications of lipid metabolism were closely associated with the manifestations and prognosis of coronavirus disease of 2019 (COVID-19). Pre-existing metabolic conditions exacerbated the severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection while modulations of aberrant lipid metabolisms alleviated the manifestations. To elucidate the underlying mechanisms, an experimental platform that reproduces human respiratory physiology is required. METHODS: Here we generated induced pluripotent stem cell-derived airway organoids (iPSC-AOs) that resemble the human native airway. Single-cell sequencing (ScRNAseq) and microscopic examination verified the cellular heterogeneity and microstructures of iPSC-AOs, respectively. We subjected iPSC-AOs to SARS-CoV-2 infection and investigated the treatment effect of lipid modifiers statin drugs on viral pathogenesis, gene expression, and the intracellular trafficking of the SARS-CoV-2 entry receptor angiotensin-converting enzyme-2 (ACE-2). RESULTS: In SARS-CoV-2-infected iPSC-AOs, immunofluorescence staining detected the SARS-CoV-2 spike (S) and nucleocapsid (N) proteins and bioinformatics analysis further showed the aberrant enrichment of lipid-associated pathways. In addition, SARS-CoV-2 hijacked the host RNA replication machinery and generated the new isoforms of a high-density lipoprotein constituent apolipoprotein A1 (APOA1) and the virus-scavenging protein deleted in malignant brain tumors 1 (DMBT1). Manipulating lipid homeostasis using cholesterol-lowering drugs (e.g. Statins) relocated the viral entry receptor angiotensin-converting enzyme-2 (ACE-2) and decreased N protein expression, leading to the reduction of SARS-CoV-2 entry and replication. The same lipid modifications suppressed the entry of luciferase-expressing SARS-CoV-2 pseudoviruses containing the S proteins derived from different SARS-CoV-2 variants, i.e. wild-type, alpha, delta, and omicron. CONCLUSIONS: Together, our data demonstrated that modifications of lipid pathways restrict SARS-CoV-2 propagation in the iPSC-AOs, which the inhibition is speculated through the translocation of ACE2 from the cell membrane to the cytosol. Considering the highly frequent mutation and generation of SARS-CoV-2 variants, targeting host metabolisms of cholesterol or other lipids may represent an alternative approach against SARS-CoV-2 infection.

5.
Front Cell Infect Microbiol ; 12: 998584, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36189352

RESUMEN

Background: Non-structural protein 1 (NS1), one of the viral proteins of influenza A viruses (IAVs), plays a crucial role in evading host antiviral immune response. It is known that the IAV NS1 protein regulates the antiviral genes response mainly through several different molecular mechanisms in cytoplasm. Current evidence suggests that NS1 represses the transcription of IFNB1 gene by inhibiting the recruitment of Pol II to its exons and promoters in infected cells. However, IAV NS1 whether can utilize a common mechanism to antagonize antiviral response by interacting with cellular DNA and immune-related transcription factors in the nucleus, is not yet clear. Methods: Chromatin immunoprecipitation and sequencing (ChIP-seq) was used to determine genome-wide transcriptional DNA-binding sites for NS1 and NF-κB in viral infection. Next, we used ChIP-reChIP, luciferase reporter assay and secreted embryonic alkaline phosphatase (SEAP) assay to provide information on the dynamic binding of NS1 and NF-κB to chromatin. RNA sequencing (RNA-seq) transcriptomic analyses were used to explore the critical role of NS1 and NF-κB in IAV infection as well as the detailed processes governing host antiviral response. Results: Herein, NS1 was found to co-localize with NF-κB using ChIP-seq. ChIP-reChIP and luciferase reporter assay confirmed the co-localization of NS1 and NF-κB at type III IFN genes, such as IFNL1, IFNL2, and IFNL3. We discovered that NS1 disturbed binding manners of NF-κB to inhibit IFNL1 expression. NS1 hijacked NF-κB from a typical IFNL1 promoter to the exon-intron region of IFNL1 and decreased the enrichment of RNA polymerase II and H3K27ac, a chromatin accessibility marker, in the promoter region of IFNL1 during IAV infection, consequently reducing IFNL1 gene expression. NS1 deletion enhanced the enrichment of RNA polymerase II at the IFNL1 promoter and promoted its expression. Conclusion: Overall, NS1 hijacked NF-κB to prevent its interaction with the IFNL1 promoter and restricted the open chromatin architecture of the promoter, thereby abating antiviral gene expression.


Asunto(s)
Antivirales , Virus de la Influenza A , Fosfatasa Alcalina/metabolismo , Antivirales/farmacología , Cromatina/metabolismo , Inmunidad , Virus de la Influenza A/genética , FN-kappa B/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
6.
Front Immunol ; 13: 1080897, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618412

RESUMEN

Background: Drug repurposing is a fast and effective way to develop drugs for an emerging disease such as COVID-19. The main challenges of effective drug repurposing are the discoveries of the right therapeutic targets and the right drugs for combating the disease. Methods: Here, we present a systematic repurposing approach, combining Homopharma and hierarchal systems biology networks (HiSBiN), to predict 327 therapeutic targets and 21,233 drug-target interactions of 1,592 FDA drugs for COVID-19. Among these multi-target drugs, eight candidates (along with pimozide and valsartan) were tested and methotrexate was identified to affect 14 therapeutic targets suppressing SARS-CoV-2 entry, viral replication, and COVID-19 pathologies. Through the use of in vitro (EC50 = 0.4 µM) and in vivo models, we show that methotrexate is able to inhibit COVID-19 via multiple mechanisms. Results: Our in vitro studies illustrate that methotrexate can suppress SARS-CoV-2 entry and replication by targeting furin and DHFR of the host, respectively. Additionally, methotrexate inhibits all four SARS-CoV-2 variants of concern. In a Syrian hamster model for COVID-19, methotrexate reduced virus replication, inflammation in the infected lungs. By analysis of transcriptomic analysis of collected samples from hamster lung, we uncovered that neutrophil infiltration and the pathways of innate immune response, adaptive immune response and thrombosis are modulated in the treated animals. Conclusions: We demonstrate that this systematic repurposing approach is potentially useful to identify pharmaceutical targets, multi-target drugs and regulated pathways for a complex disease. Our findings indicate that methotrexate is established as a promising drug against SARS-CoV-2 variants and can be used to treat lung damage and inflammation in COVID-19, warranting future evaluation in clinical trials.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Metotrexato/farmacología , Metotrexato/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Inflamación/tratamiento farmacológico , Biología Computacional
7.
Int J Mol Sci ; 22(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34576032

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic with high infectivity and mortality has caused severe social and economic impacts worldwide. Growing reports of COVID-19 patients with multi-organ damage indicated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) may also disturb the cardiovascular system. Herein, we used human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) as the in vitro platform to examine the consequence of SARS-CoV2 infection on iCMs. Differentiated iCMs expressed the primary SARS-CoV2 receptor angiotensin-converting enzyme-II (ACE2) and the transmembrane protease serine type 2 (TMPRSS2) receptor suggesting the susceptibility of iCMs to SARS-CoV2. Following the infection of iCMs with SARS-CoV2, the viral nucleocapsid (N) protein was detected in the host cells, demonstrating the successful infection. Bioinformatics analysis revealed that the SARS-CoV2 infection upregulates several inflammation-related genes, including the proinflammatory cytokine tumor necrosis factor-α (TNF-α). The pretreatment of iCMs with TNF-α for 24 h, significantly increased the expression of ACE2 and TMPRSS2, SASR-CoV2 entry receptors. The TNF-α pretreatment enhanced the entry of GFP-expressing SARS-CoV2 pseudovirus into iCMs, and the neutralization of TNF-α ameliorated the TNF-α-enhanced viral entry. Collectively, SARS-CoV2 elevated TNF-α expression, which in turn enhanced the SARS-CoV2 viral entry. Our findings suggest that, TNF-α may participate in the cytokine storm and aggravate the myocardial damage in COVID-19 patients.


Asunto(s)
COVID-19/complicaciones , Enfermedades Cardiovasculares/inmunología , Síndrome de Liberación de Citoquinas/inmunología , SARS-CoV-2/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Enfermedades Cardiovasculares/virología , Diferenciación Celular , Línea Celular , Biología Computacional , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Síndrome de Liberación de Citoquinas/patología , Síndrome de Liberación de Citoquinas/virología , Humanos , Células Madre Pluripotentes Inducidas , Miocardio/citología , Miocardio/inmunología , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/virología , Fosfoproteínas/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Serina Endopeptidasas/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Regulación hacia Arriba/inmunología , Internalización del Virus/efectos de los fármacos
8.
J Chin Med Assoc ; 84(1): 9-13, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33186212

RESUMEN

The pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has brought an unprecedented impact upon the global economy and public health. Although the SARS-CoV-2 virology has been gradually investigated, measures to combat this new threat in public health are still absent. To date, no certificated drug or vaccine has been developed for the treatment or prevention of coronavirus disease Extensive researches and international coordination has been conducted to rapidly develop novel vaccines against SARS-CoV-2 pandemic. Several major breakthroughs have been made through the identification of the genetic sequence and structural/non-structural proteins of SARS-CoV-2, which enabled the development of RNA-, DNA-based vaccines, subunit vaccines, and attenuated viral vaccines. In this review article, we present an overview of the recent advances of SARS-CoV-2 vaccines and the challenges that may be encountered in the development process, highlighting the advantages and disadvantages of these approaches that may help in effectively countering COVID-19.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Humanos , Vacunas de ADN/inmunología , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/inmunología , Vacunas de ARNm
9.
ACS Nano ; 15(1): 857-872, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33373194

RESUMEN

The infectious SARS-CoV-2 causes COVID-19, which is now a global pandemic. Aiming for effective treatments, we focused on the key drug target, the viral 3C-like (3CL) protease. We modeled a big dataset with 42 SARS-CoV-2 3CL protease-ligand complex structures from ∼98.7% similar SARS-CoV 3CL protease with abundant complex structures. The diverse flexible active site conformations identified in the dataset were clustered into six protease pharmacophore clusters (PPCs). For the PPCs with distinct flexible protease active sites and diverse interaction environments, we identified pharmacophore anchor hotspots. A total of 11 "PPC consensus anchors" (a distinct set observed in each PPC) were observed, of which three "PPC core anchors" EHV2, HV1, and V3 are strongly conserved across PPCs. The six PPC cavities were then applied in virtual screening of 2122 FDA drugs for repurposing, using core anchor-derived "PPC scoring S" to yield seven drug candidates. Experimental testing by SARS-CoV-2 3CL protease inhibition assay and antiviral cytopathic effect assays discovered active hits, Boceprevir and Telaprevir (HCV drugs) and Nelfinavir (HIV drug). Specifically, Boceprevir showed strong protease inhibition with micromolar IC50 of 1.42 µM and an antiviral activity with EC50 of 49.89 µM, whereas Telaprevir showed moderate protease inhibition only with an IC50 of 11.47 µM. Nelfinavir solely showed antiviral activity with a micromolar EC50 value of 3.28 µM. Analysis of binding mechanisms of protease inhibitors revealed the role of PPC core anchors. Our PPCs revealed the flexible protease active site conformations, which successfully enabled drug repurposing.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/química , Reposicionamiento de Medicamentos , SARS-CoV-2/enzimología , Animales , Antivirales/farmacología , Dominio Catalítico , Chlorocebus aethiops , Evaluación Preclínica de Medicamentos , Humanos , Concentración 50 Inhibidora , Nelfinavir/farmacología , Oligopéptidos/farmacología , Inhibidores de Proteasas/farmacología , Conformación Proteica , Glicoproteína de la Espiga del Coronavirus/química , Células Vero
10.
Chin J Physiol ; 63(6): 245-249, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33380608

RESUMEN

The outbreak of the global coronavirus disease 2019 (COVID-19) pandemic continues to impact the socioeconomic fabric and the general well-being of numerous populations and communities around the world. As cases continue to rise exponentially, gaining a better understanding of the pathophysiology and the associated clinical implications of SARS-CoV-2, the causative agent of COVID-19, becomes increasingly necessary. In this article, we delineate the role of COVID-19 in physiological and immunological dysfunction. Specifically, we highlight the various possible mechanisms and effects of SARS-CoV-2 infections on major organ systems as well as their contribution toward multiorgan system failure. By analyzing studies and statistics regarding various comorbidities in COVID-19 patients, we make inferences on the linkage between COVID-19, immune injury, multiorgan system damage, and disease progression.


Asunto(s)
COVID-19/fisiopatología , Sistema Inmunológico/fisiopatología , Insuficiencia Multiorgánica/virología , Comorbilidad , Progresión de la Enfermedad , Humanos
11.
Nucleic Acids Res ; 48(13): 7371-7384, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32556261

RESUMEN

ZFP36L1, a CCCH-type zinc finger protein, is an RNA-binding protein that participates in controlling cellular mRNA abundance and turnover by posttranscriptional regulation. Here, we demonstrated that ZFP36L1 has an important role in host defense against influenza A virus (IAV) infection. Overexpression of ZFP36L1 reduced IAV replication via translational repression of HA, M and NS RNA segment transcripts. IAV infection upregulated cellular ZFP36L1 expression, and endogenous ZFP36L1 knockdown significantly enhanced IAV replication. ZFP36L1 directly binds to IAV NS1 mRNA in the cytoplasm and blocks the expression and function of NS1 protein. Mutation of CCCH-type zinc finger domains of ZFP36L1 lost its antiviral potential and NS1 mRNA binding. Thus, ZFP36L1 can act as a host innate defense by targeting HA, M and NS mRNA transcripts to suppress viral protein translation.


Asunto(s)
Factor 1 de Respuesta al Butirato/metabolismo , Proteínas de la Matriz Viral/genética , Proteínas no Estructurales Virales/genética , Células A549 , Animales , Sitios de Unión , Factor 1 de Respuesta al Butirato/química , Factor 1 de Respuesta al Butirato/genética , Perros , Células HEK293 , Humanos , Virus de la Influenza A/metabolismo , Virus de la Influenza A/fisiología , Células de Riñón Canino Madin Darby , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de la Matriz Viral/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
12.
Nanoscale Horiz ; 5(7): 1058-1064, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32400801

RESUMEN

Magnetic anisotropy (MA) is a material preference that involves magnetization aligned along a specific direction and provides a basis for spintronic devices. Here we report the first observation of strong MA in a cobalt-molybdenum disulfide (Co/MoS2) heterojunction. Element-specific magnetic images recorded with an X-ray photoemission electron microscope (PEEM) reveal that ultrathin Co films, of thickness 5 monolayers (ML) and above, form micrometer (µm)-sized domains on monolayer MoS2 flakes of size tens of µm. Image analysis shows that the magnetization of these Co domains is oriented not randomly but in directions apparently correlated with the crystal structure of the underlying MoS2. Evidence from micro-area X-ray photoelectron spectra (µ-XPS) further indicates that a small amount of charge is donated from cobalt to sulfur upon direct contact between Co and MoS2. As the ferromagnetic behavior found for Co/MoS2 is in sharp contrast with that reported earlier for non-reactive Fe/MoS2, we suggest that orbital hybridization at the interface is what makes Co/MoS2 different. Our report provides micro-magnetic and micro-spectral evidence that consolidates the knowledge required to build functional heterojunctions based on two-dimensional (2D) materials.

13.
Mol Ther Nucleic Acids ; 17: 10-23, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31173947

RESUMEN

The role of microRNA (miRNA) in influenza A virus (IAV) host species specificity is not well understood as yet. Here, we show that a host miRNA, miR-1290, is induced through the extracellular signal-regulated kinase (ERK) pathway upon IAV infection and is associated with increased viral titers in human cells and ferret animal models. miR-1290 was observed to target and reduce expression of the host vimentin gene. Vimentin binds with the PB2 subunit of influenza A virus ribonucleoprotein (vRNP), and knockdown of vimentin expression significantly increased vRNP nuclear retention and viral polymerase activity. Interestingly, miR-1290 was not detected in either chicken cells or mouse animal models, and the 3' UTR of the chicken vimentin gene contains no binding site for miR-1290. These findings point to a host species-specific mechanism by which IAV upregulates miR-1290 to disrupt vimentin expression and retain vRNP in the nucleus, thereby enhancing viral polymerase activity and viral replication.

14.
Sci Rep ; 8(1): 17242, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30467324

RESUMEN

Grail is a well-characterized mediator of metabolic disease, tumour progression, and immune response. However, its role in influenza A virus (IAV) infection remains poorly understood. In this study, we demonstrated that Grail knockdown potentiates IAV infection, whereas Grail overexpression blocks IAV replication. The intranasal administration of IAV to Grail KO mice led to a lower survival rate than in similarly infected wild-type mice. Additionally, IAV-infected Grail KO mice had higher viral titres, greater immune cell infiltration, and increased expression of inflammatory cytokines in the lungs. Mechanistically, we showed that Grail interacts with viral nucleoprotein (NP), targeting it for degradation and inhibiting IAV replication. NP expression was increased in Grail knockdown cells and reduced in cells overexpressing Grail. Collectively, our results demonstrate that Grail acts as a negative regulator of IAV infection and replication by degrading viral NP. These data increase our understanding of the host antiviral response to infection with IAV.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Gripe Humana/terapia , Nucleoproteínas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Células A549 , Administración Intranasal , Animales , Modelos Animales de Enfermedad , Perros , Regulación Viral de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Gripe Humana/genética , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Ratones , Nucleoproteínas/química , Proteolisis , Ubiquitina-Proteína Ligasas/administración & dosificación , Replicación Viral
15.
Phys Chem Chem Phys ; 20(31): 20629-20634, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30059115

RESUMEN

The magnetic properties of the assembled Co nanoparticles on graphene were studied using X-ray magnetic circular dichroism (XMCD), magneto-optical Kerr effects, and a modeling simulation. We demonstrate that the superparamagnetic nanoparticles reveal a ferromagnetic phase when they are assembled on graphene. The moderate increase of the XMCD asymmetry and magnetization with coverage for this assembly indicates a dipolar-mediated magnetism, which is further verified by a model simulation considering the dipolar interaction between neighboring nanoparticles. Furthermore, C K-edge spectra reveal visible dichroism at the π* state of graphene, which indicates the existence of a spin-polarized interface state, while the assembled Co nanoparticles reveal a ferromagnetic phase. These results suggest an efficient route to stabilize the ferromagnetic phase of nanostructures on graphene by tailoring dipolar interactions, which is essential to realize a higher efficiency of spin injection in graphene-based spintronics.

16.
Oncotarget ; 9(18): 14492-14508, 2018 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-29581859

RESUMEN

Avian influenza A(H7N9) virus infections frequently lead to acute respiratory distress syndrome and death in humans. We aimed to investigate whether primary cultures of human respiratory tract epithelial cells are helpful to understand H7N9 virus pathogenesis and tissue tropism, and to evaluate how patient-related characteristics can affect the host's response to infection. Normal human bronchial epithelial cells (isolated from two different donors) and primary epithelial cells (harvested from 27 patients undergoing airway surgery) were experimentally infected with H7N9 and/or H1N1pdm for 72 h. After virus infection, the culture media were collected for viral RNA quantitation and cytokine detection. Both H7N9 and H1N1pdm viruses replicated and induced a cytokine response differently for each donor in the normal human bronchial epithelial model. H7N9 replicated equivalently in epithelial cells harvested from the inferior turbinate and paranasal sinus, and those from the larynx and bronchus, at 72 h post-infection. Viral RNA quantity at 72 h was significantly higher in patients aged 21-64 years than in patients aged ≥ 65 years; however, no effects of sex, medical comorbidities, and obesity were noted. H7N9-infected cultured cells released multiple cytokines within 72 h. Levels of interleukin-1ß, interleukin-6, interleukin-8, interferon-γ, and tumor necrosis factor-α were associated differently with patient-related characteristics (such as age, sex, obesity, and medical comorbidities). In the era of precision medicine, these findings illustrate the potential utility of this primary culture approach to predict a host's response to H7N9 infection or to future infection by newly emerging viral infections, and to dissect viral pathogenesis.

17.
J Infect Dis ; 208(11): 1898-905, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23901080

RESUMEN

BACKGROUND: Reassortment within polymerase genes causes changes in the pathogenicity of influenza A viruses. We previously reported that the 2009 pH1N1 PA enhanced the pathogenicity of seasonal H1N1. We examined the effects of the PA gene from the HPAI H5N1 following its introduction into currently circulating seasonal influenza viruses. METHODS: To evaluate the role of H5N1 PA in altering the virulence of seasonal influenza viruses, we generated a recombinant seasonal H3N2 (3446) that expressed the H5N1 PA protein (VPA) and evaluated the RNP activity, growth kinetics, and pathogenicity of the reassortant virus in mice. RESULTS: Compared with the wild-type 3446 virus, the substitution of the H5N1 PA gene into the 3446 virus (VPA/3446) resulted in increased RNP activity and an increased replication rate in A549 cells. The recombinant VPA/3446 virus also caused more severe pneumonia in Casp 1(-/-) mice than in IL1ß(-/-) and wild-type B6 mice. CONCLUSIONS: Although the PA from H5N1 is incidentally compatible with a seasonal H3N2 backbone, the H5N1 PA affected the virulence of seasonal H3N2, particularly in inflammasome-related innate immunity deficient mice. These findings highlight the importance of monitoring PA reassortment in seasonal flu, and confirm the role of the Caspase-1 gene in influenza pathogenesis.


Asunto(s)
Caspasa 1/metabolismo , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/virología , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Animales , Línea Celular , Modelos Animales de Enfermedad , Perros , Ingeniería Genética , Humanos , Inmunidad Innata , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/inmunología , ARN Polimerasa Dependiente del ARN/metabolismo , Virus Reordenados , Organismos Libres de Patógenos Específicos , Proteínas Virales/metabolismo , Virulencia , Replicación Viral
18.
J Infect Dis ; 204(6): 864-72, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21849283

RESUMEN

BACKGROUND: The 2009 influenza A pandemic virus (H1N1(pdm)) may reassort with old seasonal influenza A virus (H1N1141) in humans and potentially change their pathogenicity. METHODS AND RESULTS: This study focuses on the reassortment of ribonucleoproteins (RNPs) among H1N1(pdm) and seasonal influenza A viruses. A single RNP gene reassortment altered reporter gene expression levels driven by polymerase complex in transfection system. The growth rates of recombinant viruses with different RNP recombinations were changed in A549 cells. Mice were infected with recombinant viruses containing single RNP gene reassortment, and pathogenicity was examined. The results demonstrated that the median lethal dose (LD50) of the PB2141/PB1141/PA(pdm)/NP141 recombinant virus was lower than that of the seasonal H1N1 virus. Viral titers of this reassorted virus in the lung and spleen were significantly higher than that in seasonal H1N1 virus-challenged mice. CONCLUSIONS: Although the changes of RNP activity did not exactly reflect to mice virulence, we consistently observed that the PA gene of H1N1(pdm) results in increased polymerase activity, better replication in mice, and lower LD50. Our findings suggest that monitoring of gene reassortment for the 2009 pandemic influenza and seasonal human viruses is also important, which would help to constrain the potential emergence of a more virulent influenza A variant.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Proteínas de Unión al ARN/genética , Virus Reordenados/patogenicidad , Proteínas del Núcleo Viral/genética , Animales , Línea Celular , Modelos Animales de Enfermedad , Células Epiteliales/virología , Femenino , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas de la Nucleocápside , Infecciones por Orthomyxoviridae/mortalidad , Virus Reordenados/genética , Enfermedades de los Roedores/patología , Enfermedades de los Roedores/virología , Análisis de Supervivencia , Virulencia
19.
J Virol ; 84(19): 10051-62, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20660199

RESUMEN

PB1-F2 is a viral protein that is encoded by the PB1 gene of influenza A virus by alternative translation. It varies in length and sequence context among different strains. The present study examines the functions of PB1-F2 proteins derived from various human and avian viruses. While H1N1 PB1-F2 was found to target mitochondria and enhance apoptosis, H5N1 PB1-F2, surprisingly, did not localize specifically to mitochondria and displayed no ability to enhance apoptosis. Introducing Leu into positions 69 (Q69L) and 75 (H75L) in the C terminus of H5N1 PB1-F2 drove 40.7% of the protein to localize to mitochondria compared with the level of mitochondrial localization of wild-type H5N1 PB1-F2, suggesting that a Leu-rich sequence in the C terminus is important for targeting of mitochondria. However, H5N1 PB1-F2 contributes to viral RNP activity, which is responsible for viral RNA replication. Lastly, although the swine-origin influenza virus (S-OIV) contained a truncated form of PB1-F2 (12 amino acids [aa]), potential mutation in the future may enable it to contain a full-length product. Therefore, the functions of this putative S-OIV PB1-F2 (87 aa) were also investigated. Although this PB1-F2 from the mutated S-OIV shares only 54% amino acid sequence identity with that of seasonal H1N1 virus, it also increased viral RNP activity. The plaque size and growth curve of the viruses with and without S-OIV PB1-F2 differed greatly. The PB1-F2 protein has various lengths, amino acid sequences, cellular localizations, and functions in different strains, which result in strain-specific pathogenicity. Such genetic and functional diversities make it flexible and adaptable in maintaining the optimal replication efficiency and virulence for various strains of influenza A virus.


Asunto(s)
Virus de la Influenza A/fisiología , Proteínas Virales/fisiología , Secuencia de Aminoácidos , Animales , Apoptosis , Aves/virología , Línea Celular , Femenino , Genes Virales , Variación Genética , Células HeLa , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/fisiología , Subtipo H7N7 del Virus de la Influenza A/genética , Subtipo H7N7 del Virus de la Influenza A/patogenicidad , Subtipo H7N7 del Virus de la Influenza A/fisiología , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Porcinos/virología , Transfección , Proteínas Virales/química , Proteínas Virales/genética , Virulencia/fisiología , Replicación Viral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...