Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 664: 946-959, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38508030

RESUMEN

Three-dimensional interconnected nickel-cobalt layered double hydroxides (NiCo-LDHs) were prepared on nickel foam by ion exchange using a cobalt-based metal-organic framework (Co-MOF) as a template at different temperatures. The effects of the Co-MOF preparation temperature on the growth, mass, morphology, and electrochemical properties of the Co-MOF and derived NiCo-LDH samples were studied. The synthesis temperature from 30 to 50 °C gradually increased the mass of the active material and the thickness of the Co-MOF sheets grown on the nickel foam. The higher the temperature is, the larger the proportion of Co3+. ß-Cobalt hydroxide (ß-Co(OH)2) sheets were generated above 60 °C. The morphology and mass loading pattern of the derived flocculent layer clusters of NiCo-LDH were inherited from metal-organic frameworks (MOFs). The areal capacitance of NiCo-LDH shows an inverted U-shaped curve trend with increasing temperature. The electrode material synthesized at 50 °C had a tremendous specific capacitance of 7631 mF·cm-2 at a current density of 2 mA·cm-2. The asymmetric supercapacitor assembled with the sample and active carbon (AC) achieved an energy density of 55.0 Wh·kg-1 at a power density of 800.0 W·kg-1, demonstrating the great potential of the NiCo-LDH material for energy storage. This work presents a new strategy for designing and fabricating advanced green supercapacitor materials with large power and energy densities.

2.
Angew Chem Int Ed Engl ; 63(20): e202320091, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38488855

RESUMEN

Conjugated coordination polymers (c-CPs) are unique organic-inorganic hybrid semiconductors with intrinsically high electrical conductivity and excellent charge carrier mobility. However, it remains a challenge in tailoring electronic structures, due to the lack of clear guidelines. Here, we develop a strategy wherein controlling the redox state of hydroquinone/benzoquinone (HQ/BQ) ligands allows for the modulation of the electronic structure of c-CPs while maintaining the structural topology. The redox-state control is achieved by reacting the ligand TTHQ (TTHQ=1,2,4,5-tetrathiolhydroquinone) with silver acetate and silver nitrate, yielding Ag4TTHQ and Ag4TTBQ (TTBQ=1,2,4,5-tetrathiolbenzoquinone), respectively. In spite of sharing the same topology consisting of a two-dimensional Ag-S network and HQ/BQ layer, they exhibit different band gaps (1.5 eV for Ag4TTHQ and 0.5 eV for Ag4TTBQ) and conductivities (0.4 S/cm for Ag4TTHQ and 10 S/cm for Ag4TTBQ). DFT calculations reveal that these differences arise from the ligand oxidation state inhibiting energy band formation near the Fermi level in Ag4TTHQ. Consequently, Ag4TTHQ displays a high Seebeck coefficient of 330 µV/K and a power factor of 10 µW/m ⋅ K2, surpassing Ag4TTBQ and the other reported silver-based c-CPs. Furthermore, terahertz spectroscopy demonstrates high charge mobilities exceeding 130 cm2/V ⋅ s in both Ag4TTHQ and Ag4TTBQ.

3.
Angew Chem Int Ed Engl ; 63(15): e202400985, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38353140

RESUMEN

Introducing continuous mesochannels into covalent organic frameworks (COFs) to increase the accessibility of their inner active sites has remained a major challenge. Here, we report the synthesis of COFs with an ordered bicontinuous mesostructure, via a block copolymer self-assembly-guided nanocasting strategy. Three different mesostructured COFs are synthesized, including two covalent triazine frameworks and one vinylene-linked COF. The new materials are endowed with a hierarchical meso/microporous architecture, in which the mesochannels exhibit an ordered shifted double diamond (SDD) topology. The hierarchically porous structure can enable efficient hole-electron separation and smooth mass transport to the deep internal of the COFs and consequently high accessibility of their active catalytic sites. Benefiting from this hierarchical structure, these COFs exhibit excellent performance in visible-light-driven catalytic NO removal with a high conversion percentage of up to 51.4 %, placing them one of the top reported NO-elimination photocatalysts. This study represents the first case of introducing a bicontinuous structure into COFs, which opens a new avenue for the synthesis of hierarchically porous COFs and for increasing the utilization degree of their internal active sites.

4.
J Am Chem Soc ; 146(4): 2574-2582, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38231138

RESUMEN

Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have attracted increasing interest in electronics due to their (semi)conducting properties. Charge-neutral 2D c-MOFs also possess persistent organic radicals that can be viewed as spin-concentrated arrays, affording new opportunities for spintronics. However, the strong π-interaction between neighboring layers of layer-stacked 2D c-MOFs annihilates active spin centers and significantly accelerates spin relaxation, severely limiting their potential as spin qubits. Herein, we report the precise tuning of the charge transport and spin dynamics in 2D c-MOFs via the control of interlayer stacking. The introduction of bulky side groups on the conjugated ligands enables a significant dislocation of the 2D c-MOFs layers from serrated stacking to staggered stacking, thereby spatially weakening the interlayer interactions. As a consequence, the electrical conductivity of 2D c-MOFs decreases by 6 orders of magnitude, while the spin density achieves more than a 30-fold increase and the spin-lattice relaxation time (T1) is increased up to ∼60 µs, hence being superior to the reference 2D c-MOFs with compact stackings whose spin relaxation is too fast to be detected. Spin dynamics results also reveal that spinless polaron pairs or bipolarons play critical roles in the charge transport of these 2D c-MOFs. Our strategy provides a bottom-up approach for enlarging spin dynamics in 2D c-MOFs, opening up pathways for developing MOF-based spintronics.

5.
Angew Chem Int Ed Engl ; 63(3): e202313591, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38011010

RESUMEN

Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) are emerging as a unique subclass of layer-stacked crystalline coordination polymers that simultaneously possess porous and conductive properties, and have broad application potential in energy and electronic devices. However, to make the best use of the intrinsic electronic properties and structural features of 2D c-MOFs, the controlled synthesis of hierarchically nanostructured 2D c-MOFs with high crystallinity and customized morphologies is essential, which remains a great challenge. Herein, we present a template strategy to synthesize a library of 2D c-MOFs with controlled morphologies and dimensions via insulating MOFs-to-c-MOFs transformations. The resultant hierarchically nanostructured 2D c-MOFs feature intrinsic electrical conductivity and higher surface areas than the reported bulk-type 2D c-MOFs, which are beneficial for improved access to active sites and enhanced mass transport. As proof-of-concept applications, the hierarchically nanostructured 2D c-MOFs exhibit a superior performance for electrical properties related applications (hollow Cu-BHT nanocubes-based supercapacitor and Cu-HHB nanoflowers-based chemiresistive gas sensor), achieving over 225 % and 250 % improvement in specific capacity and response intensity over the corresponding bulk type c-MOFs, respectively.

6.
Nat Commun ; 14(1): 3850, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386039

RESUMEN

Heterogeneous reactions associated with porous solid films are ubiquitous and play an important role in both nature and industrial processes. However, due to the no-slip boundary condition in pressure-driven flows, the interfacial mass transfer between the porous solid surface and the environment is largely limited to slow molecular diffusion, which severely hinders the enhancement of heterogeneous reaction kinetics. Herein, we report a hierarchical-structure-accelerated interfacial dynamic strategy to improve interfacial gas transfer on hierarchical conductive metal-organic framework (c-MOF) films. Hierarchical c-MOF films are synthesized via the in-situ transformation of insulating MOF film precursors using π-conjugated ligands and comprise both a nanoporous shell and hollow inner voids. The introduction of hollow structures in the c-MOF films enables an increase of gas permeability, thus enhancing the motion velocity of gas molecules toward the c-MOF film surface, which is more than 8.0-fold higher than that of bulk-type film. The c-MOF film-based chemiresistive sensor exhibits a faster response towards ammonia than other reported chemiresistive ammonia sensors at room temperature and a response speed 10 times faster than that of the bulk-type film.


Asunto(s)
Estructuras Metalorgánicas , Amoníaco , Películas Cinematográficas , Difusión , Conductividad Eléctrica
7.
ACS Omega ; 8(3): 3286-3297, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36713720

RESUMEN

layered double hydroxide (LDH) as a kind of 2D layer material has a swelling phenomenon. Because swelling significantly affects the adsorption, catalysis, energy storage, and other application properties of LDHs, it is essential to study the interlayer spacing, structural stability, and ion diffusion after swelling. In this paper, a periodic computational model of Ni3Al-LDH is constructed, and the supramolecular structure, swelling law, stability, and anion diffusion properties of Ni3Al-LDH are investigated by molecular dynamics theory calculations. The results show that the interlayer water molecules of Ni3Al-LDH present a regular layered arrangement, combining with the interlayer anions by hydrogen bonds. As the number of water molecules increases, the hydrogen bond between the anion and the basal layer gradually weakens and disappears when the number of water molecules exceeds 32. The hydrogen bond between the anion and the water molecule gradually increases, reaching an extreme value when the number of water molecules is 16. The interlayer spacing of Ni3Al-LDH is not linear with the number of water molecules. The interlayer spacing increases slowly when the number of water molecules is more than 24. The maximum layer spacing is stable at around 19 Å. The interlayer spacing, binding energy, and hydration energy show an upper limit for swelling: the number of water molecules is 32. When the number of interlayer water molecules is 16, the water molecules' layer structure and LDH interlayer spacing are suitable for anions to obtain the maximum diffusion rate, 10.97 × 10-8 cm2·s-1.

8.
J Am Chem Soc ; 145(4): 2430-2438, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36661343

RESUMEN

Electrically conductive coordination polymers and metal-organic frameworks are attractive emerging electroactive materials for (opto-)electronics. However, developing semiconducting coordination polymers with high charge carrier mobility for devices remains a major challenge, urgently requiring the rational design of ligands and topological networks with desired electronic structures. Herein, we demonstrate a strategy for synthesizing high-mobility semiconducting conjugated coordination polymers (c-CPs) utilizing novel conjugated ligands with D2h symmetry, namely, "4 + 2" phenyl ligands. Compared with the conventional phenyl ligands with C6h symmetry, the reduced symmetry of the "4 + 2" ligands leads to anisotropic coordination in the formation of c-CPs. Consequently, we successfully achieve a single-crystalline three-dimensional (3D) c-CP Cu4DHTTB (DHTTB = 2,5-dihydroxy-1,3,4,6-tetrathiolbenzene), containing orthogonal ribbon-like π-d conjugated chains rather than 2D conjugated layers. DFT calculation suggests that the resulting Cu4DHTTB exhibits a small band gap (∼0.2 eV), strongly dispersive energy bands near the Fermi level with a low electron-hole reduced effective mass (∼0.2m0*). Furthermore, the four-probe method reveals a semiconducting behavior with a decent conductivity of 0.2 S/cm. Thermopower measurement suggests that it is a p-type semiconductor. Ultrafast terahertz photoconductivity measurements confirm Cu4DHTTB's semiconducting nature and demonstrate the Drude-type transport with high charge carrier mobilities up to 88 ± 15 cm2 V-1 s-1, outperforming the conductive 3D coordination polymers reported till date. This molecular design strategy for constructing high-mobility semiconducting c-CPs lays the foundation for achieving high-performance c-CP-based (opto-)electronics.

9.
Nat Commun ; 13(1): 7240, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36433971

RESUMEN

Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have attracted increasing interests for (opto)-electronics and spintronics. They generally consist of van der Waals stacked layers and exhibit layer-depended electronic properties. While considerable efforts have been made to regulate the charge transport within a layer, precise control of electronic coupling between layers has not yet been achieved. Herein, we report a strategy to precisely tune interlayer charge transport in 2D c-MOFs via side-chain induced control of the layer spacing. We design hexaiminotriindole ligands allowing programmed functionalization with tailored alkyl chains (HATI_CX, X = 1,3,4; X refers to the carbon numbers of the alkyl chains) for the synthesis of semiconducting Ni3(HATI_CX)2. The layer spacing of these MOFs can be precisely varied from 3.40 to 3.70 Å, leading to widened band gap, suppressed carrier mobilities, and significant improvement of the Seebeck coefficient. With this demonstration, we further achieve a record-high thermoelectric power factor of 68 ± 3 nW m-1 K-2 in Ni3(HATI_C3)2, superior to the reported holes-dominated MOFs.

10.
ACS Omega ; 7(43): 39169-39180, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36340068

RESUMEN

Interlayer spacing and structure stability of layered double hydroxides (LDHs) on their application performance in adsorption, ion exchange, catalysis, carrier, and energy storage is important. The effect of different interlayer anions on the interlayer spacing and structure stability of LDHs has been less studied, but it is of great significance. Therefore, based on density functional theory (DFT), the computational model with 10 kinds of anions intercalated Ni3Al-A-LDHs (A = Cl-, Br-, I-, OH-, NO3 -, CO3 2-, SO4 2-, HCOO-, C6H5SO3 -, C12H25SO3 -) and four Ni R Al-Cl-LDH models with different Ni2+/Al3+ ratios (R = 2, 3, 5, 8) were constructed to calculate and analyze interlayer spacing, structural stability, and their influence factors. It was found that the interlayer spacing order of Ni3Al-A-LDHs intercalated with different anions is OH- < CO3 2- < Cl- < Br- < I- < HCOO- < SO4 2- < NO3 - < C6H5SO3 - < C12H25SO3 -. The hydrogen bond network between the base layer and the interlayer anions affects the arrangement structure of the interlayer anions, which affects the interlayer spacing. For interlayer monatomic anions Cl-, Br-, and I- and the anion of comparable size in each direction SO4 2-, the interlayer spacing is positively correlated with the interlayer anion diameter. The larger difference between the long-axis and short-axis dimensions of the polyatomic anions results in the long axis of the anion being perpendicular to the basal layer, increasing interlayer spacing. The long-chain anion C12H25SO3 - intercalation system exhibits the largest layer spacing of 24.262 Å. As R value increases from 2 to 8, the interlayer spacing of Ni R Al-Cl-LDHs gradually increases from 7.964 to 8.124 Å. The binding energy order between the interlayer anion and basal layer is CO3 2- > SO4 2- > OH- > Cl- > Br- > I- > HCOO- > NO3 - > C12H25SO3 - > C6H5SO3 -. The smaller the interlayer spacing, the higher the binding energy and the stronger the structural stability of LDHs. The factors affecting structural stability mainly include the bond length and bond angle of the hydrogen bond and the charge interaction between the basal layer and interlayer anion. In the CO3 2- intercalated system, the hydrogen bond length exhibits the shortest of 1.95 Å and the largest bond angle of 163.68°. The density of states and energy band analysis show that the higher the number of charges carried by the anion, the stronger its ability to provide electrons to the basal layer.

11.
Angew Chem Int Ed Engl ; 61(39): e202208163, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-35903982

RESUMEN

Metal-organic frameworks (MOFs) have attracted increasing interest for broad applications in catalysis and gas separation due to their high porosity. However, the insulating feature and the limited active sites hindered MOFs as photocathode active materials for application in photoelectrocatalytic hydrogen generation. Herein, we develop a layered conductive two-dimensional conjugated MOF (2D c-MOF) comprising sp-carbon active sites based on arylene-ethynylene macrocycle ligand via CuO4 linking, named as Cu3 HHAE2 . This sp-carbon 2D c-MOF displays apparent semiconducting behavior and broad light absorption till the near-infrared band (1600 nm). Due to the abundant acetylene units, the Cu3 HHAE2 could act as the first case of MOF photocathode for photoelectrochemical (PEC) hydrogen generation and presents a record hydrogen-evolution photocurrent density of ≈260 µA cm-2 at 0 V vs. reversible hydrogen electrode among the structurally-defined cocatalyst-free organic photocathodes.

12.
ACS Appl Mater Interfaces ; 13(37): 45077-45088, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34510886

RESUMEN

Electrochemical techniques have garnered increasing attention as a heavy metal remediation platform for pollutant mitigation and sustainable recycling. Inspired by the biological signal-transfer mode, biomimic neuron-like hierarchical adsorptive networks were constructed by interweaving one-dimensional manganese oxide nanowires into polyaniline-decorated hollow structural metal-organic frameworks (MOFs). The prepared biomimic neuron adsorbent exhibits good adsorption capacity toward cations (Pb2+) and oxyanions (Cr2O72-) at the neutral state; tunable cation/oxyanion desorption can be electrochemically switched at the oxidized and reduced states, respectively, where the biomimic neuron-like hierarchical adsorptive networks facilitated electron transfer and benefited substantial redox reactions. The combination of simulations and calculations demonstrates that the curvature-induced polarization in a hollow MOF structure enhances the desorption efficiencies by improving the redox processes at the electrode-electrolyte interface, which facilitate the promising implementation in terms of water economy and downstream waste sustainability.


Asunto(s)
Materiales Biomiméticos/química , Cromatos/aislamiento & purificación , Plomo/aislamiento & purificación , Estructuras Metalorgánicas/química , Nanocables/química , Adsorción , Compuestos de Anilina/química , Cromatos/química , Teoría Funcional de la Densidad , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Plomo/química , Compuestos de Manganeso/química , Modelos Químicos , Neuronas/química , Óxidos/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación
13.
Angew Chem Int Ed Engl ; 60(26): 14365-14369, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-33843116

RESUMEN

Molecules in confined spaces exhibit unusual behaviors that are not typically observed in bulk systems. Such behavior can provide alternative strategies for exploring new reaction pathways. Cleavage of the C=N bond of Nile red (NR) in solution is an irreversible reaction. Here, we used spatial confinement within a cationic micelle-confined system to convert this reaction to a reversible process. The fluorescence of NR shifted between red and green for nine cycles. The new chemical pathway based on spatial confinement can be attributed to two factors: increasing the local concentration of reactants and reducing the reaction energy barrier. This effect is supported by both experimental evidence and theoretical calculations. The cross-linked silica shell comprising the confinement chamber stabilizes the enclosed molecules. This reduces fluorophore leakage and maintains fluorescence intensity in most environments, including in solution, on paper, and in hydrogel films, and expands practical applications in encrypted information and multi-informational displays.

14.
Acc Chem Res ; 54(1): 35-45, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33044822

RESUMEN

The properties and performance of solid nanomaterials in heterogeneous chemical reactions are significantly influenced by the interface between the nanomaterial and environment. Oriented tailoring of interfacial dynamics, that is, modifying the shared boundary for mass and energy exchange has become a common goal for scientists. Although researchers have designed and constructed an abundance of nanomaterials with excellent performances for the tailoring of reaction dynamics, a complete understanding of the mechanism of nanomaterial-environment interfacial interaction still remains elusive. To predictively understand the nanomaterial-environment relationship over a wide range of time scale, a deep and dynamic insight is required urgently. In this Account, our recent works including advances in the design and construction of nanoassembled interfaces and understanding the dynamic interaction mechanisms between different combinations of nanoparticle (NP) assembly environment interfaces for tailoring the reaction dynamics.NP assemblies with well-defined structures and compositions are inherently suitable for replacing bulk-type nanomaterials for the research on interfaces. We primarily introduced two most relevant nanoassembled surfaces that were fabricated in our laboratory, namely, ordered self-assembly interface and animate nanoassembled interface. The disordered nanoparticles can be arranged into an ordered superlattice based on the self-assembly method and patterned-assembly method. In addition, we used NPs with flexible properties to construct three-dimensional (3D) animate assemblies. On the basis of a thorough understanding of the structure-property correlation, a series of nanoassembled interfaces with various structures have been developed for practice. In comparison with traditional nanomaterial-environment interfaces, the nanoassembled interfaces can change the mode of contact between the nanomaterial and environment, thereby maximizing the number of active sites and driving interferent/product off the nanoassembled interface. The geometry, porosity, and deformable/motional properties in the nanoassembled interface can be applied to enhance the mass transfer dynamics in the chemical reaction. Moreover, the nanoassembled interface can be used to strengthen the affinity between the NP assemblies and targets, thereby enhancing the adsorption efficiency. As shown in these examples, the nanoassembled interface can effectively change the speed, intensity, and mode of interactions between the NP assemblies and environment in spatiotemporal scales.The overall performance of the interfacial dynamics can be improved by the nanoassembled interface, thereby facilitating practical application in flowing systems. We have extended the applications of nanoassembled interfaces from simple adsorption to complex reactions in flowing systems, including in vivo magnetic resonance imaging, electrocatalytic gas evolution reaction, bacterial capture, sensing of exhaled volatile organic compounds, and heterogeneous catalysis. Our current endeavors to explore the applicability of animate nanoassembled interfaces for dynamic tailoring have widened the scope of research, and attempts to construct intelligent interfaces for applications are underway.

15.
Small ; 16(43): e2004802, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32985111

RESUMEN

Metal-organic frameworks (MOFs), built from organic linkers and metal ions/clusters, have emerged as highly promising materials for wide applications. Combining highly porous crystalline MOFs with the surface-enhanced Raman scattering (SERS) technique can achieve unprecedented advantages of high selectivity, high sensitivity, and expedience in analysis and detection. In this critical review, the aim is to present a comprehensive review of recent advances in understanding of the roles of MOFs in MOF-SERS systems, particularly their structure-to-property correlation. Key examples are selected from representative literature to illustrate critical concepts and the MOF-based property-dependent applications are particularly emphasized. Finally, the barriers, future trends, and prospects for further advances in MOF-SERS platforms are also discussed.

16.
Adv Mater ; 32(37): e2002004, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32754977

RESUMEN

Taking inspiration from natural materials, composite materials can be reinforced by creating matrix architectures that can better accommodate and control internal stresses. Despite the recent success in the synthesis of artificial assemblies for local reinforcement through the introduction of oriented fibers and plates into host multilayered composites, there is a lack of fundamental understanding of the factors that determine mechanical properties. Moreover, designing building blocks and interfaces that facilitate higher resistance and energy dissipation is highly challenging. When the intrinsic material is fixed, the mechanical and tribological properties can be further adjusted. In this study, europium oxide nanosheets are arranged in interlocked-junction superstructures that resist sliding at junction points, thereby enhancing the mechanical properties of the nanosheet assemblies compared to those of the conventional face-to-face superstructures formed by parallel nanosheets. Furthermore, the crystalline origin of building blocks is revealed by demonstrating that faulty crystal nanosheets adopting an amorphous structure are different from single-crystal nanosheets, with the former exhibiting superior mechanical reinforcement and improved abrasive resistance.

17.
Analyst ; 145(17): 5925-5932, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32692339

RESUMEN

Sorbents with high surface utilization and good dispersibility are of great importance for the extraction performance of magnetic solid-phase extraction (MSPE). In this study, a fish scale-like magnetic nanomaterial (Co@Co3O4/OCN) was synthesized, which can be used as a highly efficient MSPE sorbent due to its strong magnetism, special morphology, doping of N element, numerous micro-mesopore cavities and organic functional groups (hydroxyl and carboxyl). Furthermore, a Co@Co3O4/OCN-based MSPE method for monitoring the changes in the levels of three auxins (indole-3-acetic acid, indole-3-propionic acid and 3-indole butyric acid) was successfully established. Wide linear ranges (1.0-1000.0 pg mL-1) with good correlation coefficients (R > 0.9992), low limits of detection (LODs, 0.2-4.0 pg mL-1) and satisfactory repeatability (RSD ≤5.9%, n = 3) were obtained. Using the developed method, various growth parts and different growth periods of plants under Cd stress were monitored. The results showed that auxins in various parts of plants showed differential response under Cd stress, and there was a threshold for the changes in auxin levels against Cd stress. This indicates that the developed fish scale-like Co@Co3O4/OCN nanomaterial has a good application prospect for enriching small molecular targets containing hydroxyl and carboxyl groups.

18.
Angew Chem Int Ed Engl ; 59(37): 15953-15957, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32519404

RESUMEN

The diffusion of target analytes is a determining factor for the sensitivity of a given gas sensor. Surface adsorption results in a low-concentration region near the sensor surface, producing a concentration gradient perpendicular to the surface, and drives a net flux of molecules toward solid reactive reagents on the sensor surface, that is, vertical diffusion. Here, organic semiconductor supramolecules were patterned into micromeshed arrays to integrate vertical and horizontal diffusion pathways. When used as a gas sensor, these arrays have an order of magnitude higher sensitivity than traditional film-based sensors. The sensor sensitivity ramp down with the increase in coverage density of reactive reagents, yielding two linear regions demarcated by 0.3 coverage, which are identified by the experimental results and simulations. The universal nature of template-assisted patterning allows adjustments in the composition, size, and shape of the constituent material, including nanofibers, nanoparticles, and molecules, and thus serves to improve the sensitivity of gas sensors for detecting various volatile organic compounds.

19.
Sci Adv ; 6(20): eaba1321, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32426506

RESUMEN

Nanoparticle (NP) assemblies are among the foremost achievements of nanoscience and nanotechnology because their interparticle interactions overcome the weaknesses displayed by individual NPs. However, previous studies have considered NP assemblies as inanimate, which had led to their dynamic properties being overlooked. Animate properties, i.e., those mimicking biological properties, endow NP ensembles with unique and unexpected functionalities for practical applications. In this critical review, we highlight recent advances in our understanding of the properties of NP assemblies, particularly their animate properties. Key examples are used to illustrate critical concepts, and special emphasis is placed on animate property-dependent applications. Last, we discuss the barriers to further advances in this field.

20.
Adv Sci (Weinh) ; 7(8): 1903180, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32328421

RESUMEN

The engineering of metal-organic frameworks (MOFs) into membranes and films is being investigated, to transform laboratory-synthesized MOFs into industrially viable products for a range of attractive applications. However, rational design and construction of highly permeable MOF thin films, without trade-offs in terms of structural mechanical stability, remains a significant challenge. Herein, a simple, general strategy is reported to prepare thin MOF nanosheet (NS)-assembled frame film via heteroepitaxial growth from metal hydroxide film. As the thin MOF NS-assembled film significantly enhances the permeability of mass though the film, the resultant gold nanoparticle (Au NP)@MOF film exhibits much higher catalytic efficiency than the Au NP@MOF bulk film. Meanwhile, the unique framework of the MOF NS-assembled film resists torsion and collapse, so the composite catalyst exhibits long-term stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...