Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 142: 109110, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37774903

RESUMEN

GATA3 belongs to the GATA family, and it could interact with the target gene promoter. It has been reported to play a central role in regulating lymphocyte differentiation. In this study, the GATA3 cDNA sequence was identified by a homologous clone and the RACE technology from Japanese flounder (Paralichthys olivaceus). The full-length of the GATA3 cDNA sequence was 2904 bp, including 1332 bp open reading frame (ORF), 265 bp 5 '-untranslated region (5' UTR), and 1308 bp 3 '-UTR, encoding 443 amino acids. GATA3 protein sequence was conserved in vertebrates and invertebrates, including two zinc finger domains. qRT-PCR showed that the expression of GATA3 was high in the gill, kidney, and spleen. Expression of GATA3 slowly increased at the earlier stages and culminated at the late gastrula and somatic stages. Immunohistochemistry (IHC) results showed that the GATA3 protein was expressed in lymphocyte cells, undifferentiated basal and pillar cells of the gills, as well as lymphocyte cells and melanin macrophages of the kidney. The expression of GATA3 was significantly regulated in tissues and different types of lymphocytes after stimulation with Edwardsiella tarda. Dual-luciferase reporter assay indicated that the GATA3 protein could directly interact with promoters of target genes involved in the immune response. These findings suggested that GATA3 plays a major role in regulating the immune response. This study provided a theoretical basis for the immune response mechanism of teleost and a useful reference for later research on fish immunology.


Asunto(s)
Enfermedades de los Peces , Lenguado , Animales , ADN Complementario/genética , Secuencia de Aminoácidos , Inmunidad Innata/genética , Macrófagos/metabolismo , Proteínas de Peces/química , Edwardsiella tarda/fisiología , Filogenia , Regulación de la Expresión Génica
2.
Front Endocrinol (Lausanne) ; 13: 998207, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506051

RESUMEN

Insulin-like growth factor 3 (IGF3) induces ovarian maturation in teleosts; however, research on its molecular regulatory mechanism remains deficient. Circular RNAs (circRNAs) and microRNAs (miRNAs) are involved in various biological processes, including reproduction. In this study, circRNAs and miRNAs involved in IGF3-induced ovarian maturation were evaluated in spotted scat (Scatophagus argus). In ovarian tissues, we identified 176 differentially expressed (DE) circRNAs and 52 DE miRNAs between IGF3 treatment and control groups. Gene Ontology (GO) enrichment analyses showed that host genes of DE circRNAs and target genes of DE miRNAs were enriched for various processes with a high degree of overlap, including cellular process, reproduction, reproductive process, biological adhesion, growth, extracellular region, cell junction, catalytic activity, and transcription factor activity. Enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways included cell adhesion molecules, ECM-receptor interaction, regulation of actin cytoskeleton, focal adhesion, cell cycle, Hedgehog signaling pathway, phosphatidylinositol signaling system, PI3K-Akt signaling pathway, Apelin signaling pathway, Notch signaling pathway, insulin signaling pathway, and Rap1 signaling pathway. A circRNA-miRNA-mRNA regulatory network was constructed, including DE genes involved in reproduction (e.g., oocyte maturation, oocyte meiosis, and ECM remodeling), such as ccnd2, hecw2, dnm2, irs1, adam12, and cdh13. According to the regulatory network and tissue distribution, we identified one circRNA (Lachesis_group5:6245955|6270787) and three miRNAs (novel_miR_622, novel_miR_980, and novel_miR_64) that may exert regulatory effects in IGF3-induced ovarian maturation in S. argus. Taken together, this study provides a novel insight into the molecular mechanisms by which IGF3 functions in ovaries and highlights the effects of circRNAs and miRNAs in reproduction in S. argus.


Asunto(s)
Proteínas Hedgehog , MicroARNs , Animales , ARN Circular , Fosfatidilinositol 3-Quinasas , Peces , MicroARNs/genética
3.
Biology (Basel) ; 11(7)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-36101431

RESUMEN

The tomato hind, Cephalopholis sonnerati, is a bottom-dwelling coral reef fish, which is widely distributed in the Indo-Pacific and Red Sea. C. sonnerati also features complex social structures and behaviour mechanisms. Here, we present a high-quality, chromosome-level genome assembly for C. sonnerati that was derived using PacBio sequencing and Hi-C technologies. A 1043.66 Mb genome with an N50 length of 2.49 Mb was assembled, produced containing 795 contigs assembled into 24 chromosomes. Overall, 97.2% of the complete BUSCOs were identified in the genome. A total of 26,130 protein-coding genes were predicted, of which 94.26% were functionally annotated. Evolutionary analysis revealed that C. sonnerati diverged from its common ancestor with E. lanceolatus and E. akaara approximately 41.7 million years ago. In addition, comparative genome analyses indicated that the expanded gene families were highly enriched in the sensory system. Finally, we found the tissue-specific expression of 8108 genes. We found that these tissue-specific genes were highly enriched in the brain. In brief, the high-quality, chromosome-level reference genome will provide a valuable genome resource for studies of the genetic conservation, resistance breeding, and evolution of C. sonnerati.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...